Proof by induction 8B

```
1 a Let f(n) = 8^n - 1, where n \in \mathbb{Z}^+.

∴ f(1) = 8^1 - 1 = 7, which is divisible by 7.

∴ f(n) is divisible by 7 when n = 1.

Assume that for n = k,

f(k) = 8^k - 1 is divisible by 7 for k \in \mathbb{Z}^+.

∴ f(k+1) = 8^{k+1} - 1

= 8^k \cdot 8^1 - 1

= 8(8^k) - 1

∴ f(k+1) - f(k) = [8(8^k) - 1] - [8^k - 1]

= 8(8^k) - 1 - 8^k + 1

= 7(8^k)

∴ f(k+1) = f(k) + 7(8^k)
```

As both f(k) and $7(8^k)$ are divisible by 7 then the sum of these two terms must also be divisible by 7. Therefore f(n) is divisible by 7 when n = 1.

If f(n) is divisible by 7 when n = k, then it has been shown that f(n) is also divisible by 7 when n = k + 1. As f(n) is divisible by 7 when n = 1, f(n) is also divisible by 7 for all $n \ge 1$ and $n \in \mathbb{Z}^+$ by mathematical induction.

1 b Let $f(n) = 3^{2n} - 1$, where $n \in \mathbb{Z}^+$.

: $f(1) = 3^{2(1)} - 1 = 9 - 1 = 8$, which is divisible by 8.

 \therefore f(*n*) is divisible by 8 when n = 1.

Assume that for n = k,

 $f(k) = 3^{2k} - 1$ is divisible by 8 for $k \in \mathbb{Z}^+$.

$$\therefore f(k+1) = 3^{2(k+1)} - 1$$

= 3^{2k+2} - 1
= 3^{2k}.3² - 1
= 9(3^{2k}) - 1
$$\therefore f(k+1) - f(k) = [9(3^{2k}) - 1] - [3^{2k} - 1]$$

= 9(3^{2k}) - 1 - 3^{2k} + 1
= 8(3^{2k})
$$\therefore f(k+1) = f(k) + 8(3^{2k})$$

As both f(k) and $8(3^{2k})$ are divisible by 8 then the sum of these two terms must also be divisible by 8. Therefore f(n) is divisible by 8 when n = k + 1.

If f(n) is divisible by 8 when n = k, then it has been shown that f(n) is also divisible by 8 when n = k + 1. As f(n) is divisible by 8 when n = 1, f(n) is also divisible by 8 for all $n \ge 1$ and $n \in \mathbb{Z}^+$ by mathematical induction.

- **1** c Let $f(n) = 5^n + 9^n + 2$, where $n \in \mathbb{Z}^+$.
 - :. $f(1) = 5^1 + 9^1 + 2 = 5 + 9 + 2 = 16$, which is divisible by 4.
 - \therefore f(*n*) is divisible by 4 when n = 1.
 - Assume that for n = k,
 - $f(k) = 5^k + 9^k + 2$ is divisible by 4 for $k \in \mathbb{Z}^+$.

$$\therefore f(k+1) = 5^{k+1} + 9^{k+1} + 2$$

= 5^k.5¹ + 9^k.9¹ + 2
= 5(5^k) + 9(9^k) + 2
$$\therefore f(k+1) - f(k) = [5(5^k) + 9(9^k) + 2] - [5^k + 9^k + 2]$$

= 5(5^k) + 9(9^k) + 2 - 5^k - 9^k - 2
= 4(5^k) + 8(9^k)

$$=4[5^{k}+2(9)^{k}]$$

 $\therefore f(k+1) = f(k) + 4[5^k + 2(9)^k]$

As both f(k) and $4[5^k + 2(9)^k]$ are divisible by 4 then the sum of these two terms must also be divisible by 4. Therefore f(n) is divisible by 4 when n = k + 1.

If f(n) is indivisible by 4 when n = k, then it has been shown that f(n) is also divisible by 4 when n = k + 1. As f(n) is divisible by 4 when n = 1, f(n) is also divisible by 4 for all $n \ge 1$ and $n \in \mathbb{Z}^+$ by mathematical induction.

- **1 d** Let $f(n) = 2^{4n} 1$, where $n \in \mathbb{Z}^+$.
 - :. $f(1) = 2^{4(1)} 1 = 16 1 = 15$, which is divisible by 15.

 \therefore f(*n*) = is divisible by 15 when *n* = 1.

Assume that for n = k,

 $f(k) = 2^{4k} - 1$ is divisible by 15 for $k \in \mathbb{Z}^+$.

$$\therefore f(k+1) = 2^{4(k+1)} - 1$$

= 2^{4k+4} - 1
= 2^{4k}.2⁴ - 1
= 16(2^{4k}) - 1
$$\therefore f(k+1) - f(k) = [16(2^{4k}) - 1] - [2^{4k} - 1]$$

= 16(2^{4k}) - 1 - 2^{4k} + 1
= 15(2^{4k})

 \therefore f(k+1) = f(k)+15(2^{4k})

As both f(k) and $15(2^{4k})$ are divisible by 15 then the sum of these two terms must also be divisible by 15. Therefore f(n) is divisible by 15 when n = k + 1.

If f(n) is divisible by 15 when n = k, then it has been shown that f(n) is also divisible by 15 when n = k + 1. As f(n) is divisible by 15 when n = 1, f(n) is also divisible by 15 for all $n \ge 1$ and $n \in \mathbb{Z}^+$ by mathematical induction.

- **1** e Let $f(n) = 3^{2n-1} + 1$, where $n \in \mathbb{Z}^+$.
 - : $f(1) = 3^{2(1)-1} + 1 = 3 + 1 = 4$, which is divisible by 4.
 - \therefore f(n) is divisible by 4 when n = 1.
 - Assume that for n = k,
 - $f(k) = 3^{2k-1} + 1$ is divisible by 4 for $k \in \mathbb{Z}^+$.

$$\therefore f(k+1) = 3^{2(k+1)-1} + 1$$

= 3^{2k+2-1} + 1
= 3^{2k-1}.3² + 1
= 9(3^{2k-1}) + 1
$$\therefore f(k+1) - f(k) = [9(3^{2k-1}) + 1] - [3^{2k-1} + 1]$$

= 9(3^{2k-1}) + 1 - 3^{2k-1} + 1
= 8(3^{2k-1})

$$\therefore f(k+1) = f(k) + 8(3^{2k-1})$$

As both f(k) and $8(3^{2k-1})$ are divisible by 4 then the sum of these two terms must also by divisible by 4. Therefore f(n) is divisible by 4 when n = k + 1.

If f(n) is divisible by 4 when n = k, then it has been shown that f(n) is also divisible by 4 when n = k + 1. As f(n) is divisible by 4 when n = 1, f(n) is also divisible by 8 for $n \ge 1$ and $n \in \mathbb{Z}^+$ by mathematical induction.

1 **f** Let $f(n) = n^3 + 6n^2 + 8n$, where $n \ge 1$ and $n \in \mathbb{Z}^+$.

- \therefore f(1) = 1 + 6 + 8 = 15, which is divisible by 3.
- \therefore f(n) is divisible by 3 when n = 1.
- Assume that for n = k,
- $f(k) = k^3 + 6k^2 + 8k$ is divisible by 3 for $k \in \mathbb{Z}^+$.

$$f(k+1) = (k+1)^3 + 6(k+1)^2 + 8(k+1)$$

= $k^3 + 3k^2 + 3k + 1 + 6(k^2 + 2k + 1) + 8(k+1)$
= $k^3 + 3k^2 + 3k + 1 + 6k^2 + 12k + 6 + 8k + 8$
= $k^3 + 9k^2 + 23k + 15$

$$\therefore f(k+1) - f(k) = [k^3 + 9k^2 + 23k + 15] - [k^3 + 6k^2 + 8k]$$

= $3k^2 + 15k + 15$
= $3(k^2 + 5k + 5)$

$$\therefore$$
 f(k+1) = f(k) + 3(k² + 5k + 5)

As both f(k) and $3(k^2 + 5k + 5)$ are divisible by 3 then the sum of these two terms must also be divisible by 3.

Therefore f(n) is divisible by 3 when n = k + 1.

If f(n) is divisible by 3 when n = k, then it has been shown that f(n) is also divisible by 3 when n = k + 1. As f(n) is divisible by 3 when n = 1, f(n) is also divisible by 3 for all $n \ge 1$ and $n \in \mathbb{Z}^+$ by mathematical induction.

SolutionBank

1 g Let $f(n) = n^3 + 5n$, where $n \ge 1$ and $n \in \mathbb{Z}^+$. \therefore f(1) = 1 + 5 = 6, which is divisible by 6. \therefore f(n) is divisible by 6 when n = 1. Assume that for n = k, $f(k) = k^3 + 5k$ is divisible by 6 for $k \in \mathbb{Z}^+$. \therefore f (k+1) = (k+1)³ + 5(k+1) $=k^{3}+3k^{2}+3k+1+5(k+1)$ $=k^{3}+3k^{2}+3k+1+5k+5$ $=k^{3}+3k^{2}+8k+6$ $\therefore f(k+1) - f(k) = [k^3 + 3k^2 + 8k + 6] - [k^3 + 5k]$ Let $k(k+1) = 2m, m \in \mathbb{Z}^+$, as the $=3k^{2}+3k+6$ product of two consecutive = 3k(k+1) + 6integers must be even. =3(2m)+6= 6m + 6= 6(m+1) $\therefore \mathbf{f}(k+1) = \mathbf{f}(k) + \mathbf{6}(m+1).$

As both f(k) and 6(m+1) are divisible by 6 then the sum of these two terms must also be divisible by 6. Therefore f(n) is divisible by 6 when n = k + 1.

If f(n) is divisible by 6 when n = k, then it has been shown that f(n) is also divisible by 6 when n = k + 1. As f(n) is divisible by 6 when n = 1, f(n) is also divisible by 6 for all $n \ge 1$ and $n \in \mathbb{Z}^+$ by mathematical induction.

1 h Let
$$f(n) = 2^n \cdot 3^{2n} - 1$$
, where $n \in \mathbb{Z}^+$.

$$\therefore$$
 f(1) = 2¹.3²⁽¹⁾ -1 = 2(9) -1 = 18 - 1 = 17, which is divisible by 17.

 \therefore f(*n*) is divisible by 17 when n = 1.

Assume that for n = k,

$$f(k) = 2^k \cdot 3^{2k} - 1$$
 is divisible by 17 for $k \in \mathbb{Z}^+$.

$$\therefore f(k+1) = 2^{k+1} \cdot 3^{2(k+1)} - 1$$

= 2^k (2)¹ (3)^{2k} (3)² - 1
= 2^k (2)¹ (3)^{2k} (9) - 1
= 18(2^k \cdot 3^{2k}) - 1
$$\therefore f(k+1) - f(k) = [18(2^k \cdot 3^{2k}) - 1] - [2^k \cdot 3^{2k} - 1]$$

= 18(2^k \cdot 3^{2k}) - 1 - 2^k \cdot 3^{2k} + 1
= 17(2^k \cdot 3^{2k})

$$\therefore f(k+1) = f(k) + 17(2^k \cdot 3^{2k})$$

As both f(k) and $17(2^k.3^{2k})$ are divisible by 17 then the sum of these two terms must also be divisible by 17.

Therefore f(n) is divisible by 17 when n = k + 1.

If f(n) is divisible by 17 when n = k, then it has been shown that f(n) is also divisible by 17 when n = k + 1. As f(n) is divisible by 17 when n = 1, f(n) is also divisible by 17 for all $n \ge 1$ and $n \in \mathbb{Z}^+$ by mathematical induction.

- **2** a $f(k+1) = 13^{k+1} 6^{k+1} = 13 \times 13^k 6 \times 6^k$ = $6(13^k - 6^k) + 7 \times 13^k = 6f(k) + 7(13^k)$
 - **b** <u>Basis:</u> n = 1: f(1) = 13 6 = 7 is divisible by 7. <u>Assumption:</u> f(k) is divisible by 7. <u>Induction:</u> $f(k + 1) = 6f(k) + 7(13^k)$ by part **a**. So if the statement holds for n = k, it holds for n = k + 1. <u>Conclusion:</u> The statement holds for all $n \in \mathbb{Z}^+$.

3 a
$$g(k+1) = 5^{2(k+1)} - 6(k+1) + 8 = 25 \times 52k - 6k + 2$$

= $25(5^{2k} - 6k + 8) + 144k - 198$
= $25g(k) + 9(16k - 22)$

b <u>Basis</u>: n = 1: $g(1) = 5^2 - 6 + 8 = 27$ is divisible by 9. <u>Assumption</u>: g(k) is divisible by 9. <u>Induction</u>: g(k + 1) = 25 g(k) + 9(16k - 22) by part **a**. So if the statement holds for n = k, it holds for n = k + 1. <u>Conclusion</u>: The statement holds for all $n \in \mathbb{Z}^+$. 4 $f(n) = 8^n - 3^n$, where $n \in \mathbb{Z}^+$.

 \therefore f(1) = 8¹ - 3¹ = 5, which is divisible by 5.

 \therefore f(*n*) is divisible by 5 when *n* = 1.

Assume that for n = k,

 $f(k) = 8^k - 3^k$ is divisible by 5 for $k \in \mathbb{Z}^+$.

$$\therefore f(k+1) = 8^{k+1} - 3^{k+1}$$

= 8^k.8¹ - 3^k.3¹
= 8(8^k) - 3(3^k)
$$\therefore f(k+1) - 3f(k) = [8(8^k) - 3(3^k)] - 3[8^k - 3^k]$$

= 8(8^k) - 3(3^k) - 3(8^k) + 3(3^k)
= 5(8^k)

From (a), $f(k+1) = f(k) + 5(8^k)$

As both f(k) and $5(8^k)$ are divisible by 5 then the sum of these two terms must also be divisible by 5. Therefore f(n) is divisible by 5 when n = k + 1.

If f(n) is divisible by 5 when n = k, then it has been shown that f(n) is also be divisible by 5 when n = k + 1. As f(n) is divisible by 5 when n = 1, f(n) is also divisible by 5 for all $n \ge 1$ and $n \in \mathbb{Z}^+$ by mathematical induction.

SolutionBank

5
$$f(n) = 3^{2n+2} + 8n - 9$$
, where $n \in \mathbb{Z}^+$.
∴ $f(1) = 3^{2(1)+2} + 8(1) - 9$
 $= 3^4 + 8 - 9 = 81 - 1 = 80$, which is divisible by 8.
∴ $f(n)$ is divisible by 8 when $n = 1$.
Assume that for $n = k$,
 $f(k) = 3^{2k+2} + 8k - 9$ is divisible by 8 for $k \in \mathbb{Z}^+$.
 $f(k+1) = 3^{2(k+1)+2} + 8(k+1) - 9$
 $= 3^{2k+2+2} + 8(k+1) - 9$
 $= 3^{2k+2} \cdot (3^2) + 8^k + 8 - 9$
 $= 9(3^{2k+2}) + 8k - 1$
∴ $f(k+1) - f(k) = [9(3^{2k+2}) + 8k - 1] - [3^{2k+2} + 8k - 9]$
 $= 9(3^{2k+2}) + 8k - 1 - 3^{2k+2} - 8k + 9$
 $= 8(3^{2k+2}) + 8$
 $= 8[3^{2k+2} + 1]$
∴ $f(k+1) = f(k) + 8[3^{2k+2} + 1]$

As both f(k) and $8[3^{2k+2}+1]$ are divisible by 8 then the sum of these two terms must also be divisible by 8. Therefore f(n) is divisible by 8 when n = k + 1.

If f(n) is divisible by 8 when n = k, then it has been shown that f(n) is also divisible by 8 when n = k + 1. As f(n) is divisible by 8 when n = 1 f(n) is also divisible by 8 for all $n \ge 1$ and $n \in \mathbb{Z}^+$ by mathematical induction.

SolutionBank

Core Pure Mathematics Book 1/AS

6 $f(n) = 2^{6n} + 3^{2n-2}$, where $n \in \mathbb{Z}^+$.

$$\therefore$$
 f(1) = 2⁶⁽¹⁾ + 3²⁽¹⁾⁻² = 2⁶ + 3⁰ = 64 + 1 = 65, which is divisible by 5.

- \therefore f(*n*) is divisible by 5 when n = 1.
- Assume that for n = k.

$$f(k) = 2^{6k} + 3^{2k-2}$$
 is divisible by 5 for $k \in \mathbb{Z}^+$.

$$\therefore f(k+1) = 2^{6(k+1)} + 3^{2(k+1)-2}$$
$$= 2^{6k+6} + 3^{2k+2-2}$$
$$= 2^{6}(2^{6k}) + 3^{2}(3^{2k-2})$$
$$= 64(2^{6k}) + 9(3^{2k-2})$$

$$\therefore f(k+1) - f(k) = \left[64(2^{6k}) + 9(3^{2k-2}) \right] - \left[2^{6k} + 3^{2k-2} \right]$$
$$= 64(2^{6k}) + 9(3^{2k-2}) - 2^{6k} - 3^{2k-2}$$
$$= 63(2^{6k}) + 8(3^{2k-2})$$
$$= 63(2^{6k}) + 63(3^{2k-2}) - 55(3^{2k-2})$$
$$= 63\left[2^{6k} + 3^{2k-2} \right] - 55(3^{2k-2})$$

$$\therefore f(k+1) = f(k) + 63 \left[2^{6k} + 3^{2k-2} \right] - 55(3^{2k-2})$$
$$= f(k) + 63f(k) - 55(3^{2k-2})$$
$$= 64f(k) - 55(3^{2k-2})$$
$$\therefore f(k+1) = 64f(k) - 55(3^{2k-2})$$

As both 64 f(k) and $-55(3^{2k-2})$ are divisible by 5 then the sum of these two terms must also be divisible by 5. Therefore f(n) is divisible by 5 when n = k + 1.

If f(n) is divisible by 5 when n = k, then it has been shown that f(n) is also divisible by 5 when n = k + 1. As f(n) is divisible by 5 when n = 1, f(n) is also divisible by 5 for all $n \ge 1$ and $n \in \mathbb{Z}^+$ by mathematical induction.