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5 a Wehave z=-9+33is0 that || =+/81+27 =108 = 6+/3
if arg z = @ then we have that
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So z= 6\/§e 6
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5 b We have |w| =+/3 and argw = Z—;[ so by definition we have
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7 z=1+i3 so |z|=\/1+3:2 and if arg z = @ then we have

tané’:\/gsothat 49:%

Now the equation = |z| implies that |w| = |Z| hence it only remains to find the

possible values of arg w = ¢ we have that
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Which means that z*w™'is purely imaginary i.e. that arg(zzw‘l) =+

|

. : ) T
So there are two cases to consider, we first consider the case arg(zzw 1) =

Then if w=2¢"” we have 2&— ¢ =Zhence ¢ =Zso we have
i
w=2¢e?®
In the second case we have 2% — ¢ = —Z hence ¢ = ZXso we have

i _Smi

w=2e6 =2¢ 6

8 a Note that|1+i|= V2 and arg(l +i ) =7 so we can write it in exponential form as

1+i=+/2e* hence we have (1+ i)2 =2e* x~2e* =2¢?

b We wish to prove by induction that
(1+i)" =22e*
Note that the base case is already true for n =1 by the first part of the question so assume the

statement is true up to n =k then
k ikn in k ikn k+l i(k+D)n

(1+ i)k+1 =(1+i)x2%e* = V2et x2%¢4 =27 ¢ ¢
Proving the statement is true for n =k +1 hence the claim is true by induction
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8 ¢ (1+i)°=2%2 =256

9 We have
e’ =cos@+isind
e’ =cos—O+isin—@=cosf—isinb
Multiplying the two equations gives
1=¢"xe™ =(cos@+isinB)(cosd—isinb)

=cos’ @ +sin’ @
Challenge

a We want to prove by induction that
( i0 )n _ _.nin0
re” ) =r'e
Clearly the statement is true when n =1, suppose now the statement is true for » =k then we have
\k+1 . Nk . . oL .
(re’g) — 7'6'9 X(re’g) — 7'6'9 % rkezko — rk+1ezo+zko — rk+lez(k+l)¢9

Proving the statement is true for n =k +1 hence the claim is true by induction.

b Now we want to show that
(reiﬂ )—n — r—ne—ine
Again by definition this is true when n =1s0 suppose it is true for n =k, then we have
o\ 1 B 1 _ r e (k1) —ikO-i0
(re ) - o\ e 0Nk o T ¢
( re ) re’ x(re'”) re

_ (kg =ithio

Proving the statement is true for n =k +1 hence the claim is true by induction.
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