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Polar coordinates 5D
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So at (9.15, 1.11) the tangent is perpendicular to initial line. 
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  So at (212, 2.68) the tangent is parallel to initial line. 
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3  cos2=r a θ  
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 b The lines are  where  sin (0.42053 )= ± = …y c c r  
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  The line  y c=  is 
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∴    Tangents have equations 
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 ∴  tangents are parallel at 
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5 2 cosθ= +r   
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 ∴ tangents are perpendicular to the initial line at: 

 

 (3, 0)  and (1, π)  

 

 The equations are  
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7 In order to find the length of the line ,OA  first we must find where the point is. 

We find an expression for  

 
sin 3cos s

sin

in .

y r θ
θ θ θ= +

=
  

 Now differentiating with respect to ,θ  
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 Rearrange in terms of cos ,θ  then set equal to 0  and solve 

 

2
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We neglect the negative term since     

π
0

2
θ� �  .  

Substituting this back into the given expression for ,r we find that  
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8 First we need to find the points for which the tangent to the curve is perpendicular to the initial line. 

We form an expression for x and differentiate with respect to .θ  

 

22cos 2cos
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2sin 4 cos sin
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2sin (1 2 cos ).
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θ θ θ
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We now solve equal to 0 in order to find our required θ values. We choose to neglect the solutions 

coming from sin 0θ =  factor, although πkθ =  are clearly tangent to the curve and perpendicular to 

the initial line, they are not the tangents we are looking for. This can be clearly seen by looking at the 

diagram.  

 So, 01 2 cosθ+ =  gives 
π2

.
3

θ = ±   

Since we have symmetry about the horizontal axis, we may compute the top half of the region and 

then double it later on.  

To find the area of the top region, we will need to find the area of the sector that lies between 

    

2π
π

3
θ� �  as shown in the diagram (red region). 
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Now we find the area of the right-angle triangle bounded by the horizontal axis, the tangent and the 

line 
2

.
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8 Continued 
 Using the formula  
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 and substituting in 
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3
θ =  , we find that 

 

( ) ( )( )1 1
2

2

2 2

32 1

8

3

triA = −

=
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