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Polar coordinates – mixed exercise 5

1   

  
 

 
1

1 sin
2

r a θ 
= + 

 
 

 

2
2π

2

0

2
2π

2

0

2
2π

0

2π2

0

2

2

1 1
Area 1 sin d

2 2

1
1 sin sin d

2 4

9 cos2
sin d

2 8 8

9 sin 2
cos

2 8 16

9π
1 0 (0 1 0)

2 4

9π

8

a

a

a

a

a

a

θ θ

θ θ θ

θ
θ θ

θ
θ θ

 = + 
 

 = + + 
 

 = + − 
 

 = − −  

  = − − − − −    

=

∫

∫

∫
 

 

2 

2

2 sec

(1 cos )

2 1 cos sec

cos cos 1 0

1 1 4
cos

2

is acute.

5 1
cos

2

OB a

OA a

OA OB

α
α

α α

α α

α

α

α

=

= +

= ⇒ + =

+ − =

− ± +
=

∴

−
=

       

  

Use 2cos 2 1 2sin .θ θ= −  
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3 First find P: 

 

 

1 cos 3cos

1 2cos

1 π
arcos

2 3

θ θ
θ

θ

+ =

=

⇒ = =

        

 

 By symmetry the required area 1 22( )R R= +  

 

( )
π π

2 23 3
1

0 0

π

3
1

0

π

3

0

π π

22 2
π π2

3 3

1 1
1 cos d (1 2cos cos )d

2 2

1 3 cos2
2cos d

2 2 2

1 3 1
2sin sin 2

2 2 4

1 π π 1 2π
2sin sin (0)

2 2 3 4 3

1 π 3 π 9 3
3

2 2 8 4 16

9 9
cos d (1 cos2 ) d

2 4

= + = + +

 = + + 
 

 = + +  

  = + + −    

 
= + + = + 

 

= = +

∫ ∫

∫

∫ ∫

R

R

R

θ θ θ θ θ

θ
θ θ

θ θ θ

θ θ θ θ

π

2

π

3

9 1 9 π π 3
sin 2 0

4 2 4 2 3 4

3π 9 3

8 16

3π π 5π
Area required 2

8 4 4

     = + = + − +          

= −

 ∴ = + = 
 

θ θ

 

 

4 2 2
sin 2 (must have sin 2 0)

sin 2

cos cos sin 2

d 1 1
0 0 sin sin 2 cos 2cos2

d 2 sin 2

i.e. 0 sin sin 2 cos cos2

i.e. 0 cos3

π 3π 7π
3 , ,  

2 2 2

π π 7π
, ,

6 2 6

3 π 3 7π π
So , , , and 0,

2 6 2 6 2

r a

r a

x r a

x

a a

θ θ

θ

θ θ θ

θ θ θ θ
θ θ

θ θ θ θ
θ

θ

θ

= ≥

=

= =

= ⇒ = − +

= − × +

=

∴ =

∴ =

                 


 

Use 2cos 2 2cos 1.θ θ= −  
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 Max r is 2a at point (2a, π ) 
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11 a 2| 1 |z i− − =  is a circle centred at (1,1)  with radius 2 .   

   
 

 b The Cartesian equation of a circle centred at (1,1)  with radius 2  is
2 2( 1) ( 1) 2x y− + − = .  

 Converting this to polar coordinates gives  
2 2( cos 1) ( sin 1) 2r rθ θ− + − =   which simplifies to  

  s2cos 2 inr θ θ+= when 0.r ≠   
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11 d In order to find the area of the region bounded between the lines ,  
π

6

π

2
θ θ= =  and the arc ,A we 
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12 In order to find the area of the shaded region, we must find the area of the sector bounded by the 

curve and the line OA, then subtract the area of the triangle OAB. The value of θ  at the point A  can 

be found by solving 4cos 2,2r θ= =  leading to .
6
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θ =   
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12 Now we find the area of the triangle OAB  by using the formula  
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13 First we need to find the point for which the tangent to the curve is perpendicular to the initial line. 

We form an expression for x  and differentiate with respect to .θ  
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 We now solve equal to 0 in order to find our required θ  values. We choose to neglect the solutions 

arising from thecos 0θ =  factor, since a tangent at the origin is not what we are looking for, even 

though it is perpendicular to the initial line.  
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13 Continued 

 To find the area of the region, we will need to find the area of the sector that lies between   0 Aθ θ� �  as 

shown in the diagram (red region). 
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Now we find the area of the right-angle triangle bounded by the horizontal axis, the tangent and the 

line .Aθ θ=   

Using the formula  
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Challenge  

 First we find expressions for x  and y in terms of .θ  
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If we use the linear formula y mx c= + , we can find a value for c  by substituting in values for x  and 
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