Core Pure Mathematics Book 2

Hyperbolic Functions 6A

Core Pure Mathematics Book 2

 $\frac{\mathrm{e}^x + \mathrm{e}^{-x}}{2} = 2$ 4 $e^{x} + e^{-x} = 4$ Multiply throughout by e^x . $e^{2x} + 1 = 4e^{x}$ $e^{2x} - 4e^{x} + 1 = 0$ $e^x = \frac{4 \pm \sqrt{16 - 4}}{2}$ Solve as a quadratic in e^x . $e^x = 3.732$ or $e^x = 0.268$ $x = \ln 3.732 = 1.32$ (2 d.p.) $x = \ln 0.268 = -1.32(2 \text{ d.p.})$ 5 $\frac{e^{x}-e^{-x}}{2}=1$ $e^x - e^{-x} = 2$ Multiply throughout by e^x . $e^{2x} - 1 = 2e^x$ $e^{2x} - 2e^{x} - 1 = 0$ $e^x = \frac{2 \pm \sqrt{4+4}}{2}$ Solve as a quadratic in e^x . $e^x = 2.414$ or $e^x = -0.414$ $e^{x} = 2.414$ $x = \ln 2.414 = 0.88$ (2 d.p.) e^x cannot be negative. $6 \qquad \frac{e^{2x} - 1}{e^{2x} + 1} = -\frac{1}{2}$ $2(e^{2x}-1) = -(e^{2x}+1)$ $2e^{2x} - 2 = -e^{2x} - 1$ $3e^{2x} = 1$ $e^{2x} = \frac{1}{3}$ $2x = \ln\left(\frac{1}{3}\right)$

$$x = \frac{1}{2} \ln \left(\frac{1}{3} \right) = -0.55 \ (2 \ \text{d.p.})$$

© Pearson Education Ltd 2018. Copying permitted for purchasing institution only. This material is not copyright free.

Core Pure Mathematics Book 2

SolutionBank

9 **a** $y = 3 \tanh x + 2 = 3 \frac{\sinh x}{\cosh x} + 2$ When x = 0, $y = 3 \frac{\sinh 0}{\cosh 0} + 2 = 2$. When x is large and positive, $\sinh x \approx \frac{1}{2}e^x$ and $\cosh x \approx \frac{1}{2}e^x$, so $y \approx 5$. When x is large and negative, $\sinh x \approx -\frac{1}{2}e^{-x}$ and $\cosh x \approx \frac{1}{2}e^{-x}$, so $y \approx -1$.

Alternatively, the graph of $y = 3 \tanh x + 2$ can be envisioned by scaling $y = \tanh x$ by a factor of 3 in the *y* direction, followed by a transition of 2 units in the positive *y* direction.

© Pearson Education Ltd 2018. Copying permitted for purchasing institution only. This material is not copyright free.

9 **b** When x is large and positive, $\sinh x \approx \frac{1}{2}e^x$ and $\cosh \approx \frac{1}{2}e^x$. So $y \approx 3+2$, thus giving y = 5 as an asymptote. When x is large and negative, $\sinh x \approx -\frac{1}{2}e^{-x}$ and $\cosh \approx \frac{1}{2}e^{-x}$. So $y \approx -3+2$, thus giving y = -1 as an asymptote.

Challenge

Challenge

b $y = \operatorname{cosech} x = \frac{1}{\sinh x}$ When x = 0, $\sinh x = 0$. So $\operatorname{cosech} 0$ is not well defined.

As $x \to 0_+$ (zero from above), $\sinh x$ will be an infinitesimal positive number and so $\operatorname{cosech} x \to +\infty$.

As $x \to 0_-$ (zero from below), sinh x will be an infinitesimal negative number and so $\operatorname{cosech} x \to -\infty$.

When x is large and positive, $\sinh x \approx \frac{1}{2}e^x$, so $y \approx 0$.

When x is large and negative, $\sinh x \approx -\frac{1}{2}e^{-x}$, so $y \approx 0$.

Challenge

c $y = \operatorname{coth} x = \frac{\cosh x}{\sinh x}$ When x = 0, $\sinh x = 0$, and $\cosh x = 1$. So $\coth 0$ is not well defined.

As $x \to 0_+$ (zero from above), sinh x will be an infinitesimal positive number and $\cosh x \approx 1$, so $\operatorname{cosech} x \to +\infty$.

As $x \to 0_-$ (zero from below), sinh x will be an infinitesimal negative number and $\cosh x \approx 1$, so $\operatorname{cosech} x \to -\infty$.

When x is large and positive, $\sinh x \approx \frac{1}{2}e^x$ and $\cosh x \approx \frac{1}{2}e^x$, so $y \approx 1$.

When x is large and negative, $\sinh x \approx -\frac{1}{2}e^{-x}$ and $\cosh x \approx \frac{1}{2}e^{-x}$, so $y \approx -1$.

