Hyperbolic Functions 6C

1 a RHS =
$$2 \sinh A \cosh A$$

= $2 \left(\frac{e^A - e^{-A}}{2} \right) \left(\frac{e^A + e^{-A}}{2} \right)$
= $\frac{1}{2} \left(e^{2A} - 1 + 1 - e^{-2A} \right)$
= $\frac{e^{2A} - e^{-2A}}{2}$
= $\sinh 2A = \text{LHS}$

b RHS =
$$\cosh A \cosh B - \sinh A \sinh B$$

$$= \left(\frac{e^A + e^{-A}}{2}\right) \left(\frac{e^B + e^{-B}}{2}\right) - \left(\frac{e^A - e^{-A}}{2}\right) \left(\frac{e^B - e^{-B}}{2}\right)$$

$$= \frac{e^{A+B} + e^{-A+B} + e^{A-B} + e^{-A-B}}{4}$$

$$- \frac{e^{A+B} - e^{-A+B} - e^{A-B} + e^{-A-B}}{4}$$

$$= \frac{2(e^{-A+B} + e^{A-B})}{4}$$

$$= \frac{e^{A-B} + e^{-(A-B)}}{2}$$

$$= \cosh (A - B) = LHS$$

RHS =
$$4 \cosh^3 A - 3 \cosh A$$

= $4 \left(\frac{e^A + e^{-A}}{2} \right)^3 - 3 \left(\frac{e^A + e^{-A}}{2} \right)$
 $(e^A + e^{-A})^3 = e^{3A} + 3e^{2A} e^{-A} + 3e^A e^{-2A} + e^{-3A}$
= $e^{3A} + 3e^A + 3e^{-A} + e^{-3A}$
RHS = $\frac{e^{3A} + 3e^A + 3e^{-A} + e^{-3A}}{2} - \frac{3(e^A + e^{-A})}{2}$
= $e^{3A} + e^{-3A}$
= $e^{3A} + 3e^A + 3e^{-A} + e^{-3A}$
= $e^{3A} + 3e^A + 3e^{-A} + e^{-3A}$
= $e^{3A} + 3e^A + 3e^{-A} + e^{-3A}$
= $e^{3A} + 3e^A + 3e^A + 3e^{-A} + e^{-3A}$
= $e^{3A} + 3e^A + 3e$

1 d RHS =
$$2\sin\left(\frac{A-B}{2}\right)\cosh\left(\frac{A+B}{2}\right)$$

= $2\left(\frac{e^{\frac{A-B}{2}} - e^{\frac{-A+B}{2}}}{2}\right)\left(\frac{e^{\frac{A+B}{2}} + e^{\frac{-A-B}{2}}}{2}\right)$
= $\frac{1}{2}\left(e^{\frac{A-B}{2} + \frac{A+B}{2}} - e^{\frac{-A+B}{2} + \frac{A+B}{2}} + e^{\frac{A-B}{2} + \frac{A-B}{2}} - e^{\frac{-A+B}{2} + \frac{-A-B}{2}}\right)$
= $\frac{1}{2}\left(e^{A} - e^{B} + e^{-B} - e^{-A}\right)$
= $\frac{1}{2}\left(e^{A} - e^{-A}\right) - \frac{1}{2}\left(e^{B} - e^{-B}\right)$
= $\sinh A - \sinh B$
= LHS

2 a sin(A-B) = sin A cos B - cos A sin Bsinh(A-B) = sinh A cosh B - cosh A sinh B Replace $\sin x$ by $\sinh x$ and $\cos x$ by $\cosh x$.

b
$$\sin 3A = 3\sin A - 4\sin^3 A$$

= $3\sin A - 4\sin A\sin^2 A$
 $\sinh 3A = 3\sinh A + 4\sinh^3 A$

Replace $\sin^2 A$, the product of two sine terms, by $-\sinh^2 A$.

$$\mathbf{c} \quad \cos A + \cos B = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$$
$$\cosh A + \cosh B = 2\cosh\left(\frac{A+B}{2}\right)\cosh\left(\frac{A-B}{2}\right)$$

Replace $\cos x$ by $\cosh x$.

d
$$\cos 2A = \frac{1 - \tan^2 A}{1 + \tan^2 A}$$

 $\cosh 2A = \frac{1 + \tanh^2 A}{1 - \tanh^2 A}$

 $\tan^2 A = \frac{\sin^2 A}{\cos^2 A}$, so there is a product of two sines. Replace $\tan^2 A$ by $-\tanh^2 A$.

$$\cos 2A = \cos^4 A - \sin^4 A$$

$$= \cos^4 A - (\sin^2 A)(\sin^2 A)$$

$$\cosh 2A = \cosh^4 A - (-\sinh^2 A)(-\sinh^2 A)$$

$$= \cosh^4 A - \sinh^4 A$$

Replace $\sin^2 A$ by $-\sinh^2 A$.

3 a Using $\cosh^2 x - \sinh^2 x = 1$

$$4 - \sinh^2 x = 1$$

$$\sinh^2 x = 3$$

- **b** Using $\tanh x = \frac{\sinh x}{\cosh x}$ $\tanh x = \pm \frac{\sqrt{3}}{2}$
- c Using $\cosh 2x = 2 \cosh^2 x 1$ $\cosh 2x = (2 \times 4) - 1$ = 7
- 4 a Using $\cosh^2 x \sinh^2 x = 1$ $\cosh^2 x - (-1)^2 = 1$ $\cosh^2 x = 2$ $\cosh x = \sqrt{2}$
 - **b** Using $\sin 2x = 2 \sinh x \cosh x$ $\sinh 2x = 2 \times (-1) \times \sqrt{2}$ $= -2\sqrt{2}$
 - c Using $\tanh 2x = \frac{2 \tanh x}{1 + \tanh^2 x}$ $\tanh x = \frac{\sinh x}{\cosh x} = \frac{-1}{\sqrt{2}}$ $\tanh 2x = \frac{\left(-\frac{2}{\sqrt{2}}\right)}{1 + \left(\frac{1}{2}\right)}$ $= \frac{-2}{\sqrt{2}} \times \frac{2}{3}$ $= \frac{-4}{3\sqrt{2}} = -\frac{2\sqrt{2}}{3}$

5 a
$$3 \sinh x + 4 \cosh x = 4$$

$$\frac{3(e^{x} - e^{-x})}{2} + \frac{4(e^{x} + e^{-x})}{2} = 4$$
$$3e^{x} - 3e^{-x} + 4e^{x} + 4e^{-x} = 8$$
$$7e^{x} - 8 + e^{-x} = 0$$

$$7e^{2x} - 8e^x + 1 = 0$$

$$(7e^x - 1)(e^x - 1) = 0$$

$$e^x = \frac{1}{7}$$
 or $e^x = 1$

$$x = \ln\left(\frac{1}{7}\right), \ x = 0$$

Solve as a quadratic in e^x .

$$\mathbf{b} \qquad 7 \sinh x - 5 \cosh x = 1$$

$$\frac{7(e^x - e^{-x})}{2} - \frac{5(e^x + e^{-x})}{2} = 1$$

$$7e^x - 7e^{-x} - 5e^x - 5e^{-x} = 2$$

$$2e^x - 2 - 12e^{-x} = 0$$

$$e^x - 1 - 6e^{-x} = 0$$

$$e^{2x} - e^x - 6 = 0$$

$$(e^x - 3)(e^x + 2) = 0$$

$$e^x = 3$$

 $x = \ln 3$

 $\blacktriangleleft \qquad \qquad \qquad \mathsf{Multiply throughout by } \mathbf{e}^{\mathbf{x}}.$

 $e^x = -2$ is not possible for real x.

c $30 \cosh x = 15 + 26 \sinh x$

$$30\frac{(e^x + e^{-x})}{2} = 15 + 26\frac{(e^x - e^{-x})}{2}$$

$$15e^x + 15e^{-x} = 15 + 13e^x - 13e^{-x}$$

$$2e^x - 15 + 28e^{-x} = 0$$

$$2e^{2x} - 15e^x + 28 = 0$$

$$(2e^x - 7)(e^x - 4) = 0$$

 $e^x = \frac{7}{2}, e^x = 4$

$$x = \ln\left(\frac{7}{2}\right), x = \ln 4$$

Solve as a quadratic in e^x .

5 d
$$13 \sinh x - 7 \cosh x + 1 = 0$$

 $13 \frac{(e^x - e^{-x})}{2} - 7 \frac{(e^x + e^{-x})}{2} + 1 = 0$
 $13e^x - 13e^{-x} - 7e^x - 7e^{-x} + 2 = 0$
 $6e^x + 2 - 20e^{-x} = 0$
 $3e^x + 1 - 10e^{-x} = 0$
 $3e^{2x} + e^x - 10 = 0$
 $(3e^x - 5)(e^x + 2) = 0$
 $e^x = \frac{5}{3}$
Multiply throughout by e^x .
Solve as a quadratic in e^x .
 $e^x = -2$ is not possible for real x .

e
$$\cosh 2x - 5\sinh x = 13$$

Using $\cosh 2x = 1 + 2\sinh^2 x$,
 $1 + 2\sinh^2 x - 5\sinh x = 13$
 $2\sinh^2 x - 5\sinh x - 12 = 0$
 $(2\sinh x + 3)(\sinh x - 4) = 0$
 $\sinh x = -\frac{3}{2}$, $\sinh x = 4$
 $x = \operatorname{arsinh}\left(-\frac{3}{2}\right)$, $x = \operatorname{arsinh}4$

$$x = \ln\left(-\frac{3}{2} + \sqrt{\frac{9}{4} + 1}\right)$$

$$= \ln\left(\frac{-3 + \sqrt{13}}{2}\right)$$

$$x = \ln(4 + \sqrt{16 + 1})$$

$$= \ln(4 + \sqrt{17})$$

5 **f**
$$3\sinh^2 x - 13\cosh x + 7 = 0$$

Using $\cosh^2 x - \sinh^2 x = 1$,
 $3(\cosh^2 x - 1) - 13\cosh x + 4 = 0$
 $3\cosh^2 x - 13\cosh x + 4 = 0$
 $(3\cosh - 1)(\cosh x - 4) = 0$
 $\cosh x = \frac{1}{3}$, $\cosh x = 4$
 $\cosh x = \ln(4 \pm \sqrt{4^2 - 1})$
 $\cosh x = \ln(4 \pm \sqrt{15})$
Use $\arcsin x = \ln(x + \sqrt{x^2 - 1})$, but remember that $\ln(x - \sqrt{x^2 - 1})$ is also a solution.

$$\begin{aligned}
\mathbf{g} & & \sinh 2x - 7 \sin x = 0 \\
2 \sin x & \cosh x - 7 \sin x = 0 \\
& & \sinh x (2 \cosh x - 7) = 0 \\
& & \sinh x = 0, \cosh x = \frac{7}{2} \\
& x = 0, x = \pm \operatorname{arcosh} \left(\frac{7}{2}\right)
\end{aligned}$$

$$\begin{aligned}
\mathbf{g} & & \sinh x \cos x - 7 \sin x = 0 \\
& \sinh x (2 \cosh x - 7) = 0 \\
& x = 0, \cosh x = \frac{7}{2}
\end{aligned}$$

$$\begin{aligned}
\mathbf{g} & & \text{Use } \arcsin x = \ln(x + \sqrt{x^2 - 1}), \text{ but } \\
& \text{remember that } \ln(x - \sqrt{x^2 - 1}) \text{ is also } \\
& \text{a solution.}
\end{aligned}$$

$$\begin{aligned}
\mathbf{g} & & \text{Use } \arcsin x = \ln(x + \sqrt{x^2 - 1}), \text{ but } \\
& \text{remember that } \ln(x - \sqrt{x^2 - 1}) \text{ is also } \\
& \text{a solution.}
\end{aligned}$$

$$\begin{aligned}
\mathbf{g} & & \text{Use } \arcsin x = \ln(x + \sqrt{x^2 - 1}), \text{ but } \\
& \text{remember that } \ln(x - \sqrt{x^2 - 1}) \text{ is also } \\
& \text{a solution.}
\end{aligned}$$

$$\begin{aligned}
\mathbf{g} & & \text{Use } \arcsin x = \ln(x + \sqrt{x^2 - 1}), \text{ but } \\
& \text{remember that } \ln(x - \sqrt{x^2 - 1}) \text{ is also } \\
& \text{a solution.}
\end{aligned}$$

$$\begin{aligned}
\mathbf{g} & & \text{Use } \arcsin x = \ln(x + \sqrt{x^2 - 1}), \text{ but } \\
& \text{remember that } \ln(x - \sqrt{x^2 - 1}) \text{ is also } \\
& \text{a solution.}
\end{aligned}$$

$$\begin{aligned}
\mathbf{g} & & \text{Use } \arcsin x = \ln(x + \sqrt{x^2 - 1}), \text{ but } \\
& \text{remember that } \ln(x - \sqrt{x^2 - 1}) \text{ is also } \\
& \text{a solution.}
\end{aligned}$$

$$\begin{aligned}
\mathbf{g} & & \text{Use } \arcsin x = \ln(x + \sqrt{x^2 - 1}), \text{ but } \\
& \text{remember that } \ln(x - \sqrt{x^2 - 1}) \text{ is also } \\
& \text{a solution.}
\end{aligned}$$

$$\begin{aligned}
\mathbf{g} & & \text{Use } \arcsin x = \ln(x + \sqrt{x^2 - 1}), \text{ but } \\
& \text{remember that } \ln(x - \sqrt{x^2 - 1}) \text{ is also } \\
& \text{a solution.}
\end{aligned}$$

h
$$4\cosh x + 13e^{-x} = 11$$

 $4\frac{(e^x + e^{-x})}{2} + 13e^{-x} = 11$
 $2e^x + 2e^{-x} + 13e^{-x} = 11$
 $2e^x + 15e^{-x} - 11 = 0$
 $2e^{2x} - 11e^x + 15 = 0$
 $(2e^x - 5)(e^x - 3) = 0$
 $e^x = \frac{5}{2}, e^x = 3$
 $x = \ln\left(\frac{5}{3}\right), x = \ln 3$
Multiply throughout by e^x .

Solve as a quadratic in e^x .

5 i
$$2 \tanh x = \cosh x$$

$$\frac{2 \sinh}{\cosh x} = \cosh x$$

$$2 \sinh x = \cosh^2 x$$
Using $\cosh^2 x - \sinh^2 x = 1$

$$2 \sinh x = 1 + \sinh^2 x$$

$$\sinh^2 x - 2 \sinh x + 1 = 0$$

$$(\sinh x - 1)^2 = 0$$

$$\sinh x = 1$$

$$x = \operatorname{arsinh} 1$$

$$x = \ln(1 + \sqrt{1^2 + 1})$$

$$= \ln(1 + \sqrt{2})$$
Use $\arcsin x = \ln(x + \sqrt{x^2 + 1})$.

6 a

$$2\cosh^{2} x - 1 = 2\left(\frac{e^{x} + e^{-x}}{2}\right)^{2} - 1$$

$$= 2\left(\frac{e^{2x} + 2 + e^{-2x}}{4}\right) - 1$$

$$= \frac{e^{2x} + e^{-2x}}{2}$$

$$= \cosh 2x.$$

b Using the relation $\cosh 2x = 2\cosh^2 x - 1$, the equation becomes $2\cosh^2 x - 3\cosh x - 9 = 0$. Substituting $u = \cosh x$ into this equation allows us to clearly see a quadratic equation

 $2u^2 - 3u - 9 = 0$ which gives solutions $u = \frac{3 \pm \sqrt{9 + 72}}{4}$, we neglect the negative solution to avoid complex numbers.

i.e.

u = 3.

This means that our solutions for x are the values for

 $x_1 = \operatorname{ar} \cosh(3)$.

Now recalling the expression $\arcsin u = \ln \left(u \pm \sqrt{u^2 - 1} \right)$, we obtain the exact logarithm solutions $x = \ln \left(3 \pm 2\sqrt{2} \right)$.

- 7 Using the identity $\cosh^2 x \sinh^2 x = 1$, the equation in question becomes $2(\cosh^2 x 1) 5\cosh x = 5$.
 - We simplify and use the substitution $u = \cosh x$ in order to obtain $2u^2 5u 7 = 0$. This equation has solutions $u = \frac{5 \pm \sqrt{25 + 56}}{4}$, we neglect the negative solution to avoid complex numbers, thus $u = \frac{7}{2}$.

This means that our solutions for x are the values for

$$x = \operatorname{ar} \cosh\left(\frac{7}{2}\right).$$

Now recalling the expression $\operatorname{arcosh} u = \ln\left(u \pm \sqrt{u^2 - 1}\right)$, we obtain the exact logarithm solutions

$$x = \ln\left(\frac{1}{2}\left(7 \pm 3\sqrt{5}\right)\right).$$

8 $\operatorname{sech}^2 x = 1 + \tanh^2 x$ is not true, the correct identity is $\operatorname{sech}^2 x = 1 - \tanh^2 x$ by Osborn's rule. He has split the fraction via denominator on the second line. This is not valid. In mathematics we write this as

$$\frac{a}{b+c} \neq \frac{a}{b} + \frac{a}{c}$$

The final mistake he made was assuming that taking the reciprocal of all terms preserves the value.

This is incorrect. For example $3+1 \neq \frac{1}{3}+1$.

The correct proof is

$$\frac{1 + \tanh^2 x}{1 - \tanh^2 x} \equiv \frac{2 - \operatorname{sech}^2 x}{\operatorname{sech}^2 x}$$
$$\equiv \frac{2}{\operatorname{sech}^2 x} - 1$$
$$\equiv 2 \cosh^2 x - 1.$$

9 a Recall the identity $R \cosh(x+a) = R \cosh x \cosh a + R \sinh x \sinh a$.

From this we can set $R \cosh a = 10$ and $R \sinh a = 6$.

In order to find values for R and a:

$$\frac{R \sinh a}{R \cosh a} = \tanh a = \frac{6}{10} = \frac{3}{5}$$
giving
$$a = \operatorname{artanh}(0.6)$$

$$\approx 0.693(3 \text{ d.p.})$$

We can now use the expression $R \cosh a = 10$.

To find
$$\cosh a : \operatorname{sech}^2 a = 1 - \tanh^2 a = 1 - \left(\frac{3}{5}\right)^2 = \frac{16}{25}$$

$$\therefore \cosh^2 a = \frac{1}{\operatorname{sech}^2 a} = \frac{25}{16} \text{ and so } \cosh a = \frac{5}{4}$$
So $R = \frac{10}{\cosh a} = \frac{10}{\left(\frac{5}{4}\right)} = 8$

Thus giving us $10 \cosh x + 6 \sinh x = 8 \cosh(x + 0.693)$.

9 b The minimum value occurs when $\cosh(x+0.693)$ is minimal. We know this occurs when x+0.693=0, by the graph of $\cosh x$. So the minimal value is $8\cosh 0=8$.

We could also find this answer by setting $y = 8\cosh(x + 0.693)$, finding the solution to

$$\frac{dy}{dx} = 8\sinh(x + 0.693) = 0$$
 as $x = -0.693$ and substituting in, to get $y = 8\cosh 0 = 8$.

The second derivative should be checked to be positive at this point in order to conclude that the stationary point is minimal, not maximal.

c $10 \cosh x + 6 \sinh x = 8 \cosh(x + 0.693) = 11$.

We rearrange the equation to be $cosh(x+0.693) = \frac{11}{8}$.

Set u = x + 0.693 and now noting the symmetry about u = 0 we obtain two solutions,

$$u = \pm \operatorname{arcosh}\left(\frac{11}{8}\right) \approx \pm 0.841(3 \text{ d.p.})$$

This means our solutions for x are

$$x_1 = -1.534$$
,

$$x_2 = 0.148$$
.