Hyperbolic Functions 6D

- 1 a $\frac{d}{dx}(\sinh 2x) = 2\cosh 2x$
 - $\mathbf{b} \quad \frac{\mathrm{d}}{\mathrm{d}x}(\cosh 5x) = 5\sinh 5x$
 - $\mathbf{c} = \frac{\mathrm{d}}{\mathrm{d}x}(\tanh 2x) = 2\mathrm{sech}^2 2x$
 - $\mathbf{d} \quad \frac{\mathrm{d}}{\mathrm{d}x}(\sinh 3x) = 3\cosh 3x$
 - $e \frac{d}{dx} (\coth 4x) = -4 \operatorname{cosech}^2 4x$
 - $\mathbf{f} \quad \frac{\mathrm{d}}{\mathrm{d}x}(\operatorname{sech} 2x) = \frac{-1}{(\cosh 2x)^2} \times 2\sinh 2x$ $= -2\frac{\sinh 2x}{\cosh 2x} \times \frac{1}{\cosh 2x}$ $= -2\tanh 2x \operatorname{sech} 2x$
 - $\mathbf{g} \quad \frac{\mathrm{d}}{\mathrm{d}x} (\mathrm{e}^{-x} \sinh x) = -\mathrm{e}^{-x} \sinh x + \mathrm{e}^{-x} \cosh x$ $= \mathrm{e}^{-x} (\cosh x \sinh x)$
 - $\mathbf{h} \quad \frac{\mathrm{d}}{\mathrm{d}x}(x\cosh 3x) = \cosh 3x + 3x \sinh 3x$
 - $\mathbf{i} \quad \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\sinh x}{3x} \right) = \frac{\cosh x}{3x} \frac{\sinh x}{3x^2}$ $= \frac{x \cosh x \sinh x}{3x^2}$
 - $\mathbf{j} \quad \frac{\mathrm{d}}{\mathrm{d}x}(x^2\cosh 3x) = 2x\cosh 3x + x^2 \times 3\sinh 3x$ $= x(2\cosh 3x + 3x\sinh 3x)$
 - $\mathbf{k} \quad \frac{\mathrm{d}}{\mathrm{d}x}(\sinh 2x \cosh 3x) = 2\cosh 2x \cosh 3x + \sinh 2x \times 3\sinh 3x$ $= 2\cosh 2x \cosh 3x + 3\sinh 2x \sinh 3x$
 - $\mathbf{l} \quad \frac{\mathrm{d}}{\mathrm{d}x}(\ln\cosh x) = \frac{1}{\cosh x} \times \sinh x$ $= \tanh x$

1 **m**
$$\frac{d}{dx}(\sinh x^3) = 3x^2 \cosh x^3$$

$$\mathbf{n} \frac{\mathrm{d}}{\mathrm{d}x}(\cosh^2 2x) = (2\cosh 2x)(2\sinh 2x)$$
$$= 4\cosh 2x \sinh 2x$$

$$\mathbf{o} \quad \frac{\mathrm{d}}{\mathrm{d}x} (\mathrm{e}^{\cosh x}) = \sinh x \mathrm{e}^{\cosh x}$$

$$\mathbf{p} \frac{\mathrm{d}}{\mathrm{d}x}(\mathrm{cosech}x) = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{1}{\sinh x}\right) = \frac{0 - 1 \times \cosh x}{\sinh^2 x}$$
$$= -\coth x \operatorname{cosech}x$$

$$2 \quad y = a \cosh nx + b \sinh nx$$

Differentiate with respect to x

$$\frac{\mathrm{d}y}{\mathrm{d}x} = an\sinh nx + nb\cosh nx$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = an^2 \cosh nx + bn^2 \sinh nx$$

$$= n^2 (a \cosh nx + b \sinh nx)$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = n^2 y$$

3 To find the stationary point of the curve $y = 12 \cosh x - \sinh x$, we differentiate and set equal to 0.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 12\sinh x - \cosh x = 0$$

$$tanh x = \frac{1}{12}$$

$$x = \operatorname{artanh}\left(\frac{1}{12}\right)$$
.

Using the formula $\arctan x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$, we find that

$$x = \frac{1}{2} \ln \left(\frac{1 + \frac{1}{12}}{1 - \frac{1}{12}} \right)$$

$$=\frac{1}{2}\ln\left(\frac{13}{11}\right)$$

3 Substituting this value for x back into the given equation for y, we obtain

$$y = 12 \cosh\left(\frac{1}{2}\ln\left(\frac{13}{11}\right)\right) - \sinh\left(\frac{1}{2}\ln\left(\frac{13}{11}\right)\right)$$
$$= \frac{12}{2}\left(\sqrt{\frac{13}{11}} + \sqrt{\frac{11}{13}}\right) - \frac{1}{2}\left(\sqrt{\frac{13}{11}} - \sqrt{\frac{11}{13}}\right)$$
$$= \frac{1}{2}\left(11\sqrt{\frac{13}{11}} + 13\sqrt{\frac{11}{13}}\right)$$
$$= \sqrt{143}.$$

So the coordinates of the stationary point are $\left(\frac{1}{2}\ln\left(\frac{13}{11}\right), \sqrt{143}\right)$.

4 $y = \cosh 3x \sinh x$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\sinh 3x \sinh x + \cosh 3x \cosh x$$

$$\frac{d^2y}{dx^2} = 9\cosh 3x \sinh x + 3\sinh 3x \cosh x + 3\sinh 3x \cosh x + \cosh 3x \sinh x$$

$$= 10 \cosh 3x \sinh x + 6 \sinh 3x \cosh x$$

$$= 2(5\cosh 3x\sinh x + 3\sinh 3x\cosh x)$$

5 a Let $y = \operatorname{arcosh} 2x$ then $\cosh y = 2x$

Differentiate with respect to x

$$sinh y \frac{dy}{dx} = 2$$

$$\frac{dy}{dx} = \frac{2}{\sinh y}$$

$$= \frac{2}{\sqrt{\cosh^2 y - 1}} \text{ but } \cosh y = 2x$$

$$so \frac{dy}{dx} = \frac{2}{\sqrt{4x^2 - 1}}$$

b Let $y = \operatorname{arsinh}(x+1)$ then $\sinh y = x+1$

$$\cosh y \frac{dy}{dx} = 1$$

$$\frac{dy}{dx} = \frac{1}{\cosh y}$$

$$= \frac{1}{\sqrt{\sinh^2 y + 1}} \text{ but sinh } y = x + 1$$

$$\text{so } \frac{dy}{dx} = \frac{1}{\sqrt{(x+1)^2 + 1}}$$

5 c Let
$$y = \operatorname{artanh} 3x$$

$$tanh y = 3x$$

$$\operatorname{sech}^2 y \frac{\mathrm{d}y}{\mathrm{d}x} = 3$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{\mathrm{sech}^2 v}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{1 - \tanh^2 y}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{1 - 9x^2}$$

d Let
$$y = \operatorname{arsech} x$$

$$sech y = x$$

$$\frac{1}{\cosh y} = x$$

$$1 = x \cosh y$$

Differentiate with respect to x

$$0 = \cosh y + x \sinh y \frac{\mathrm{d}y}{\mathrm{d}x}$$

$$x \sinh y \frac{\mathrm{d}y}{\mathrm{d}x} = -\cosh y$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-\cosh y}{x \sinh y}$$

$$= \frac{-1}{x \tanh y}$$

$$= \frac{-1}{x(1 - \operatorname{sech}^2 y)^{\frac{1}{2}}}$$

$$=\frac{-1}{1}$$

$$=\frac{-1}{x(1-x^2)^{\frac{1}{2}}}$$

$$= -\frac{1}{x^2 \sqrt{\frac{1}{x^2} - 1}}$$

e Let
$$y = \operatorname{arcosh} x^2$$

Let
$$t = x^2$$
 $y = \operatorname{arcosh} t$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right) \left(\frac{\mathrm{d}t}{\mathrm{d}x}\right) = \left(\frac{1}{\sqrt{t^2 - 1}}\right) (2x)$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x}{\sqrt{x^4 - 1}}$$

5 f $y = \operatorname{arcosh} 3x$

Let
$$t = 3x$$
 $y = \operatorname{arcosh} t$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right) \left(\frac{\mathrm{d}t}{\mathrm{d}x}\right) = \left(\frac{1}{\sqrt{t^2 - 1}}\right) (3)$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{\sqrt{9x^2 - 1}}$$

 \mathbf{g} $y = x^2 \operatorname{arcosh} x$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x\mathrm{arcosh}x + \frac{x^2}{\sqrt{x^2 - 1}}$$

h $y = \operatorname{arsinh} \frac{x}{2}$

Let
$$t = \frac{x}{2}$$
 $y = \operatorname{arsinh} t$

$$\frac{\mathrm{d}t}{\mathrm{d}x} = \frac{1}{2} \quad \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{1}{\sqrt{t^2 + 1}}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right) \left(\frac{\mathrm{d}t}{\mathrm{d}x}\right) = \frac{1}{\sqrt{t^2 + 1}} \left(\frac{1}{2}\right)$$

$$= \frac{1}{2\sqrt{\left(\frac{x}{2}\right)^2 + 1}} = \frac{1}{\sqrt{x^2 + 4}}$$

 \mathbf{i} $y = e^{x^3} \operatorname{arsinh} x$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 \mathrm{e}^{x^3} \mathrm{arsinh}x + \frac{\mathrm{e}^{x^3}}{\sqrt{x^2 + 1}}$$

 \mathbf{j} $y = \operatorname{arsinh} x \operatorname{arcosh} x$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{x^2 + 1}} \operatorname{arcosh}x + \frac{1}{\sqrt{x^2 - 1}} \operatorname{arsinh}x$$

 \mathbf{k} $y = \operatorname{arcosh}x\operatorname{sech}x$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{x^2 - 1}} \operatorname{sech}x - \operatorname{arcosh}x \tanh x \operatorname{sech}x$$

$$= \operatorname{sech} x \left(\frac{1}{\sqrt{x^2 - 1}} - \operatorname{arcosh} x \tanh x \right)$$

 $y = x \operatorname{arcosh} 3x$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{arcosh}3x + x \times \frac{3}{\sqrt{9x^2 - 1}}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{arcosh}3x + \frac{3x}{\sqrt{9x^2 - 1}}$$

6 a
$$y = \operatorname{arcosh} x$$

 $\cosh y = x$
 $\sinh y \frac{dy}{dx} = 1 \Rightarrow$

$$\frac{dy}{dx} = \frac{1}{\sinh y} = \frac{1}{\sqrt{\cosh^2 y - 1}}$$
but $\cosh y = x$ so
$$\frac{dy}{dx} = \frac{1}{\sqrt{x^2 - 1}}$$

b
$$y = \operatorname{artanh} x$$

 $\tanh y = x$
 $\operatorname{sech}^2 y \frac{dy}{dx} = 1$
 $\frac{dy}{dx} = \frac{1}{\operatorname{sech}^2 y} = \frac{1}{1 - \tanh^2 y}$
but $\tanh y = x$ so
 $\frac{dy}{dx} = \frac{1}{1 - x^2}$

7
$$y = \operatorname{artanh} \frac{e^x}{2}$$

Let $t = \frac{e^x}{2}$ $y = \operatorname{artanh} t$

$$\frac{dt}{dx} = \frac{e^x}{2} \frac{dy}{dt} = \frac{1}{1 - t^2}$$
Then $\frac{dy}{dx} = \left(\frac{dy}{dt}\right) \left(\frac{dt}{dx}\right) = \frac{1}{1 - t^2} \times \frac{e^x}{2}$

$$= \frac{1}{1 - \left(\frac{e^x}{2}\right)^2} \times \frac{e^x}{2}$$

$$= \frac{\frac{e^x}{2}}{\frac{4 - e^{2x}}{4}}$$

$$\frac{dy}{dx} = \frac{2e^x}{4 - e^{2x}}$$

$$(4 - e^{2x}) \frac{dy}{dx} = 2e^x$$

8
$$y = \operatorname{arsinh} x$$

$$\frac{dy}{dx} = \frac{1}{\sqrt{x^2 + 1}} = (x^2 + 1)^{-\frac{1}{2}}$$

$$\frac{d^2y}{dx^2} = -\frac{1}{2}(x^2 + 1)^{-\frac{3}{2}}2x$$

$$= \frac{-x}{(x^2 + 1)^{\frac{3}{2}}}$$

$$\frac{d^3y}{dx^3} = \frac{-1(x^2 + 1)^{\frac{3}{2}} - \frac{3}{2}(x^2 + 1)^{\frac{1}{2}} \times 2x \times -x}{(x^2 + 1)^3}$$

$$= \frac{3x^2(x^2 + 1)^{\frac{1}{2}} - (x^2 + 1)^{\frac{3}{2}}}{(x^2 + 1)^3}$$

$$= \frac{3x^2}{(x^2 + 1)^{\frac{5}{2}}} - \frac{1}{(x^2 + 1)^{\frac{3}{2}}}$$

$$(x^2 + 1)\frac{d^3y}{dx^3} = \frac{3x^2}{(x^2 + 1)^{\frac{3}{2}}} - \frac{1}{(x^2 + 1)^{\frac{1}{2}}}$$

$$= -3x\frac{d^2y}{dx^2} - \frac{dy}{dx}$$

$$\therefore (1 + x^2)\frac{d^3y}{dx^3} + 3x\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$$

$$9 \quad y = (\operatorname{arcosh} x)^2$$

$$\frac{dy}{dx} = 2\operatorname{arcosh} x \times \frac{1}{\sqrt{x^2 - 1}}$$

$$= 2(x^2 - 1)^{-\frac{1}{2}} \operatorname{arcosh} x$$

$$\frac{d^2 y}{dx^2} = -(x^2 - 1)^{-\frac{3}{2}} 2x \operatorname{arcosh} x + 2(x^2 - 1)^{-\frac{1}{2}} \times \frac{1}{\sqrt{x^2 - 1}}$$

$$= \frac{-2x \operatorname{arcosh} x}{(x^2 - 1)^{\frac{3}{2}}} + \frac{2}{x^2 - 1}$$

10
$$y = \operatorname{artanh} x$$
 $x = \frac{12}{13}$ $y = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right) = \frac{1}{2} \ln 25 = \ln 5$ $\frac{dy}{dx} = \frac{1}{1-x^2} = \frac{1}{1-\left(\frac{12}{12}\right)^2} = \frac{169}{25}$

Tangent is

$$(y - \ln 5) = \frac{169}{25} \left(x - \frac{12}{13} \right)$$

$$25y - 25 \ln 5 = 169x - 156$$

- 11 In order to find the normal to the curve $y = \operatorname{arcosh} 2x$ at the point x = 2, we first must find the
 - value of $\frac{dy}{dx}$ at that point.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{\sqrt{4x^2 - 1}}, \text{ so at } x = 2,$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{\sqrt{4 \times 2^2 - 1}}$$
$$= \frac{2}{\sqrt{15}}.$$

- The gradient of the normal at this point is therefore $-\frac{\sqrt{15}}{2}$
- The y value at x = 2 is $\operatorname{arcosh} 4 = \ln \left(4 + \sqrt{15} \right)$.
- So now we substitute our values for x, y, m into y = mx + c in order to find C.
- y = mx + c

$$\ln\left(4+\sqrt{15}\right) = -\frac{\sqrt{15}}{2} \times 2 + c$$

$$c = \ln\left(4 + \sqrt{15}\right) + \sqrt{15}.$$

- So we have $y = -\frac{\sqrt{15}}{2}x + \sqrt{15} + \ln(4 + \sqrt{15})$.
- **12 a** We differentiate and evaluate at 0 until we have 3 non-zero terms.

$$f(x) = \cosh x \Rightarrow f(0) = 1$$

$$f'(x) = \sinh x \Rightarrow f'(0) = 0$$

$$f''(x) = \cosh x \Rightarrow f''(0) = 1$$

$$f'''(x) = \sinh x \Rightarrow f'''(0) = 0$$

$$f^{(4)}(x) = \cosh x \Rightarrow f^{(4)}(0) = 1.$$

Now we use the standard Maclaurin series expansion and obtain

$$\cosh x \approx 1 + \frac{x^2}{2!} + \frac{x^4}{4!}$$
$$= 1 + \frac{x^2}{2} + \frac{x^4}{24}.$$

b Using the approximation, $\cosh 0.2 \approx 1 + \frac{0.2^2}{2!} + \frac{0.2^4}{4!} = 1.020067(6 \text{ d.p.}).$

$$error = \left| \frac{1.020066667 - \cosh 0.2}{\cosh 0.2} \right| \times 100$$
$$= 8.7 \times 10^{-6} \%.$$

13 a We differentiate and evaluate at 0 until we have 3 non-zero terms.

$$f(x) = \sinh x \Rightarrow f(0) = 0$$

$$f'(x) = \cosh x \Rightarrow f'(0) = 1$$

$$f''(x) = \sinh x \Rightarrow f''(0) = 0$$

$$f'''(x) = \cosh x \Rightarrow f'''(0) = 1$$

$$f^{(4)}(x) = \sinh x \Rightarrow f^{(4)}(0) = 0$$

$$f^{(5)}(x) = \cosh x \Rightarrow f^{(5)}(0) = 1.$$

Now we use the standard Maclaurin series expansion and obtain

$$\sinh x \approx x + \frac{x^3}{3!} + \frac{x^5}{5!}$$
$$= x + \frac{x^3}{6} + \frac{x^5}{120}.$$

b Since for all integers $n \ge 1$, $f^{(2n-2)}(x) = \sinh x \Rightarrow f^{(2n-2)}(0) = 0$, $f^{(2n-1)}(x) = \cosh x \Rightarrow f^{(2n-1)}(0) = 1$.

We can conclude that only the odd derivatives will contribute to the Maclaurin series expansion, each with a denominator of (2n-1)!.

The first non-zero term occurs when n = 1 with this choice of superscript and so we can conclude that the nth non zero term is $\frac{x^{2n-1}}{n}$

that the *n*th non-zero term is $\frac{x^{2n-1}}{(2n-1)!}$.

14 a We differentiate and evaluate at 0 until we have 2 non-zero terms.

$$f(x) = \tanh x \Rightarrow f(0) = 0$$

$$f'(x) = \operatorname{sech}^2 x \Longrightarrow f'(0) = 1$$

$$f''(x) = -2 \tanh x \operatorname{sech}^2 x \Rightarrow f''(0) = 0$$

$$f'''(x) = 4 \tanh^2 x \operatorname{sech}^2 x - 2 \operatorname{sech}^4 x \Rightarrow f'''(0) = -2.$$

Now we use the standard Maclaurin series expansion and obtain

$$tanh x \approx x - \frac{2x^3}{3!}$$
$$= x - \frac{x^3}{3!}$$

b Using the approximation,

$$\tanh 0.8 \approx 0.8 - \frac{0.8^{3}}{3}$$

$$= 0.629333(6 \text{ d.p.})$$

$$error = \left| \frac{0.629333 - \tanh 0.8}{\tanh 0.8} \right| \times 100$$

$$= 5.23\%(3 \text{ s.f.})$$

15 a We differentiate and evaluate at 0 until we have three non-zero terms. $f(x) = \operatorname{ar} \tanh x \Rightarrow f(0) = 0$

$$f'(x) = \frac{1}{1 - x^2} \Rightarrow f'(0) = 1$$

$$f''(x) = \frac{2x}{\left(1 - x^2\right)^2} \Rightarrow f''(0) = 0$$

$$f'''(x) = \frac{2(3x^2 + 1)}{(1 - x^2)^3} \Rightarrow f'''(0) = 2$$

$$f^{(4)}(x) = \frac{24x(x^2+1)}{(1-x^2)^4} \Rightarrow f^{(4)}(0) = 0$$

$$f^{(5)}(x) = \frac{24(5x^4 + 10x^2 + 1)}{(1 - x^2)^5} \Rightarrow f^{(5)}(0) = 24.$$

Now we use the standard Maclaurin series expansion and obtain

artanh
$$x \approx x + \frac{2x^3}{3!} + \frac{24x^5}{5!}$$

= $x + \frac{x^3}{3} + \frac{x^5}{5}$.

b By observation, the *n* th non-zero term in the series expansion appears to be $\frac{x^{2n-1}}{2n-1}$.

15 c We differentiate and evaluate at 0 until we have two non-zero terms.

$$f(x) = \cosh x \operatorname{artanh} x \Longrightarrow f(0) = 0$$

$$f'(x) = \frac{\cosh x}{1 - x^2} + \sinh x \operatorname{artanh} x \Longrightarrow f'(0) = 1$$

$$f''(x) = \frac{2\sinh x}{1 - x^2} + \frac{2x\cosh x}{\left(1 - x^2\right)^2} + \cosh x \operatorname{artanh} x \Longrightarrow f''(0) = 0$$

$$f'''(x) = \frac{6x \sinh x + 2 \cosh x}{\left(1 - x^2\right)^2} + \frac{8x^2 \cosh x}{\left(1 - x^2\right)^3}$$

$$+\frac{3\cosh x}{1-x^2} + \sinh x \operatorname{artanh} x \Longrightarrow f'''(0) = 5.$$

Now we use the standard Maclaurin series expansion and obtain

$$\cosh x \operatorname{artanh} x \approx x + \frac{5x^3}{3!}$$
$$= x + \frac{5x^3}{6}$$

A less tedious way of doing this would be to take the expansions of $\cosh x$ and artanh x then multiply together, omitting higher order terms.

$$\cosh x \approx 1 + \frac{x^2}{2} + \frac{x^4}{24}$$

$$\operatorname{artanh} x \approx x + \frac{x^3}{3} + \frac{x^5}{5}$$

$$\cosh x \operatorname{artanh} x \approx x + \frac{x^3}{2} + \frac{x^3}{3} + \dots$$

$$=x+\frac{5x^3}{6}.$$

16 We differentiate and evaluate at 0 until we have three non-zero terms.

$$f(x) = \sinh x \cosh 2x \Rightarrow f(0) = 0$$

$$f'(x) = \cosh x \cosh 2x + 2 \sinh x \sinh 2x \Rightarrow f'(0) = 1$$

$$f''(x) = 5\sinh x \cosh 2x + 4\cosh x \sinh 2x \Rightarrow f''(0) = 0$$

$$f'''(x) = 13\cosh x \cosh 2x + 14\sinh x \sinh 2x \Rightarrow f'''(0) = 13$$

$$f^{(4)}(x) = 41\sinh x \cosh 2x + 40\cosh x \sinh 2x \Rightarrow f^{(4)}(0) = 0$$

$$f^{(5)}(x) = 121\cosh x \cosh 2x + 122\sinh x \sinh 2x \Rightarrow f^{(5)}(0) = 121.$$

Now we use the standard Maclaurin series expansion and obtain

$$\sinh x \cosh 2x \approx x + \frac{13x^3}{3!} + \frac{121x^5}{5!}$$
$$= x + \frac{13x^3}{6} + \frac{121x^5}{120}.$$

17 a We differentiate $y = \cos x \cosh x$ with respect to x four times.

$$y = \cos x \cosh x$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \cos x \sinh x - \sin x \cosh x$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -2\sin x \sinh x$$

$$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = -2(\cos x \sinh x + \sin x \cosh x)$$

$$\frac{\mathrm{d}^4 y}{\mathrm{d}x^4} = -4\cos x \cosh x = -4y.$$

b We evaluate the differentials at 0 until we have three non-zero terms.

$$f(x) = \cos x \cosh x \Rightarrow f(0) = 1$$

$$f'(x) = \cos x \sinh x - \sin x \cosh x \Rightarrow f'(0) = 0$$

$$f''(x) = -2\sin x \sinh x \Rightarrow f''(0) = 0$$

$$f'''(x) = -2(\cos x \sinh x + \sin x \cosh x) \Rightarrow f'''(0) = 0$$

$$f^{(4)}(x) = -4\cos x \cosh x = -4f(x) \Rightarrow f^{(4)}(0) = -4.$$

- Since we have the relation $\frac{d^4y}{dx^4} = -4y$, we can conclude that all differentials that are not of the
- form $\frac{d^{4n}y}{dx^{4n}}$, (where *n* is an integer) is 0 when evaluated at 0. So our third non-zero term is

$$\frac{\mathrm{d}^8 y}{\mathrm{d}x^8} = \frac{\mathrm{d}^4}{\mathrm{d}x^4} \left(\frac{\mathrm{d}^4 y}{\mathrm{d}x^4} \right)$$

$$=\frac{\mathrm{d}^4}{\mathrm{d}x^4}\left(-4y\right)$$

$$= -4 \frac{\mathrm{d}^4 y}{\mathrm{d}x^4}$$

$$=16y$$

$$= 16\cos x \cosh x \Rightarrow f^{(8)}(0) = 16.$$

Now we use the standard Maclaurin series expansion and obtain

$$\cos x \cosh x \approx 1 - \frac{4x^4}{4!} + \frac{16x^8}{8!}$$

$$=1-\frac{x^4}{6}+\frac{x^8}{2520}$$

17 c From the previous question, we know that the $\frac{d^{4n}y}{dx^{4n}}$ terms are the only non-zero contributions.

Recalling that the Maclaurin series expansion is $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)x^k}{k!}$ and considering

$$\frac{d^{4n}y}{dx^{4n}} = \frac{d^{4n-4}}{dx^{4n-4}} \left(\frac{d^4y}{dx^4} \right)$$

$$= \frac{d^{4n-4}}{dx^{4n-4}} \left(-4y \right)$$

$$= -4 \frac{d^{4n-8}}{dx^{4n-8}} \left(\frac{d^4y}{dx^4} \right)$$

$$= -4 \frac{d^{4n-8}}{dx^{4n-8}} \left(-4y \right)$$

$$\vdots$$

$$= \left(-4 \right)^n y,$$

along with all differentials that are not of the form $\frac{d^{4n}y}{dx^{4n}}$ (where *n* is an integer) is 0 when evaluated at 0, we can write an expression.

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)x^k}{k!}$$

$$\cos x \cosh x = \sum_{r=0}^{\infty} \frac{\frac{d^{4r}y}{dx^{4r}}(0)x^{4r}}{(4r)!}$$

$$= \sum_{r=0}^{\infty} \frac{(-4)^r y(0)x^{4r}}{(4r)!}$$

$$= \sum_{r=0}^{\infty} \frac{(-4)^r x^{4r}}{(4r)!}$$

Challenge

We differentiate and evaluate at 0 until we have three non-zero terms.

$$f(x) = \operatorname{sech} x \Rightarrow f(0) = 1$$

$$f'(x) = -\tanh x \operatorname{sech} x \Rightarrow f'(0) = 0$$

$$f''(x) = \tanh^2 x \operatorname{sech} x - \operatorname{sech}^3 x \Longrightarrow f''(0) = -1$$

$$f'''(x) = 2 \tanh x \operatorname{sech}^{3} x - \tanh^{3} x \operatorname{sech} x + 3 \tanh x \operatorname{sech}^{3} x$$
$$= 5 \tanh x \operatorname{sech}^{3} x - \tanh^{3} x \operatorname{sech} x \Rightarrow f'''(0) = 0$$

$$f^{(4)}(x) = 5 \operatorname{sech}^5 x - 15 \tanh^2 x \operatorname{sech}^3 x$$

$$-3 \tanh^2 x \operatorname{sech}^3 x + \tanh^4 x \operatorname{sech} x \Rightarrow f^{(4)}(0) = 5.$$

Now we use the standard Maclaurin series expansion and obtain

$$\sinh x \cosh 2x \approx 1 - \frac{x^2}{2!} + \frac{5x^4}{4!}$$
$$= 1 - \frac{x^2}{2} + \frac{5x^4}{24}$$