Methods in differential equations 7C

1 a First consider the corresponding homogeneous equation $\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 5y = 0$

The auxiliary equation is $m^2 + 6m + 5 = 0$ (m+5)(m+1) = 0m = -5 or -1

So the complementary function is $y = Ae^{-x} + Be^{-5x}$

The form of the particular integral is $y = \lambda$, so $\frac{dy}{dx} = 0$ and $\frac{d^2y}{dx^2} = 0$

Substituting into $\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 5y = 10$ gives:

$$5\lambda = 10 \Longrightarrow \lambda = 2$$

So the general solution is $y = Ae^{-x} + Be^{-5x} + 2$

b First consider the corresponding homogeneous equation $\frac{d^2 y}{dx^2} - 8\frac{dy}{dx} + 12y = 0$

The auxiliary equation is

$$m^{2} - 8m + 12 = 0$$

 $(m-6)(m-2) = 0$
 $m = 6 \text{ or } 2$

So the complementary function is $y = Ae^{6x} + Be^{2x}$

The form of the particular integral is $y = \lambda + \mu x$, so $\frac{dy}{dx} = \mu$, $\frac{d^2 y}{dx^2} = 0$

Substituting into $\frac{d^2 y}{dx^2} - 8\frac{dy}{dx} + 12y = 36x$ gives: $-8\mu + 12\lambda + 12\mu x = 36x$ Comparing coefficients of x: $12\mu = 36 \Rightarrow \mu = 3$ Comparing constants: $-8\mu + 12\lambda = 0 \Rightarrow 3\lambda = 2\mu$ Substituting for μ : $3\lambda = 6 \Rightarrow \lambda = 2$ So a particular integral is 2 + 3xThe general solution is $y = Ae^{6x} + Be^{2x} + 2 + 3x$

1 c Solving the corresponding homogeneous equation $\frac{d^2 y}{dx^2} + \frac{dy}{dx} - 12y = 0$

The auxiliary equation is

$$m^{2} + m - 12 = 0$$

 $(m+4)(m-3) = 0$
 $m = -4 \text{ or } 3$

So the complementary function is $y = Ae^{-4x} + Be^{3x}$

The form of the particular integral is $y = \lambda e^{2x}$, so $\frac{dy}{dx} = 2\lambda e^{2x}$ and $\frac{d^2y}{dx^2} = 4\lambda e^{2x}$

Substituting into $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 12y = 12e^{2x}$ gives:

$$4\lambda e^{2x} + 2\lambda e^{2x} - 12\lambda e^{2x} = 12e^{2x}$$
$$\Rightarrow -6\lambda e^{2x} = 12e^{2x} \Rightarrow \lambda = -2$$

So a particular integral is $-2e^{2x}$

The general solution is $y = Ae^{-4x} + Be^{3x} - 2e^{2x}$

d Solving the corresponding homogeneous equation $\frac{d^2 y}{dx^2} + 2\frac{dy}{dx} - 15y = 0$

The auxiliary equation is $m^2 + 2m - 15 = 0$ (m+5)(m-3) = 0m = -5 or 3

So the complementary function is $y = Ae^{-5x} + Be^{3x}$ The form of the particular integral is $y = \lambda$, so $\frac{dy}{dx} = 0$ and $\frac{d^2y}{dx^2} = 0$ Substituting into $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - 15y = 5$ gives:

 $-15\lambda = 5 \Longrightarrow \lambda = -\frac{1}{3}$

So a particular integral is $-\frac{1}{3}$

The general solution is $y = Ae^{-5x} + Be^{3x} - \frac{1}{3}$

1 e Solving the corresponding homogeneous equation $\frac{d^2y}{dx^2} - 8\frac{dy}{dx} + 16y = 0$

The auxiliary equation is

$$m^{2} - 8m + 16 = 0$$
$$(m-4)(m-4) = 0$$
$$m = 4$$

So the complementary function is $y = (A + Bx)e^{4x}$

The particular integral is $y = \lambda + \mu x$, so $\frac{dy}{dx} = \mu$ and $\frac{d^2y}{dx^2} = 0$ Substituting in $\frac{d^2y}{dx^2} - 8\frac{dy}{dx} + 16y = 8x + 12$ gives: $-8\mu + 16\lambda + 16\mu x = 8x + 12$ Comparing coefficients of x: $16\mu = 8 \Rightarrow \mu = \frac{1}{2}$ Comparing constants: $-8\mu + 16\lambda = 12 \Rightarrow 4\lambda = 3 + 2\mu$ Substituting for μ : $4\lambda = 3 + 1 \Rightarrow \lambda = 1$ So a particular integral is $1 + \frac{1}{2}x$

The general solution is $y = (A + Bx)e^{4x} + 1 + \frac{1}{2}x$

The auxiliary equation has a repeated root so the complementary function is of the form $(A + Bx)e^{ax}$

1 f Solving the corresponding homogeneous equation $\frac{d^2y}{dr^2} + 2\frac{dy}{dr} + y = 0$ The auxiliary equation is $m^2 + 2m + 1 = 0$ (m+1)(m+1) = 0m = -1So the complementary function is $y = (A + Bx)e^{-x}$ The particular integral is $y = \lambda \cos 2x + \mu \sin 2x$, so $\frac{\mathrm{d}y}{\mathrm{d}x} = -2\lambda\sin 2x + 2\mu\cos 2x$ $\frac{d^2 y}{dx^2} = -4\lambda \cos 2x - 4\mu \sin 2x$ Substituting in $\frac{d^2y}{dr^2} + 2\frac{dy}{dr} + y = 25\cos 2x$ gives: $-4\lambda\cos 2x - 4\mu\sin 2x + 2(-2\lambda\sin 2x + 2\mu\cos 2x) + \lambda\cos 2x + \mu\sin 2x = 25\cos 2x$ $\Rightarrow (-4\lambda + 4\mu + \lambda)\cos 2x + (-4\mu - 4\lambda + \mu)\sin 2x = 25\cos 2x$ $\Rightarrow (4\mu - 3\lambda)\cos 2x - (3\mu + 4\lambda)\sin 2x = 25\cos 2x$ Equating the coefficients of $\cos 2x$: $4\mu - 3\lambda = 25$ (1) Equating the coefficients of sin 2x: $3\mu + 4\lambda = 0$ (2)Adding $4 \times$ equation (1) to $3 \times$ equation (2) gives: $16\mu - 12\lambda + 9\mu + 12\lambda = 100 \Longrightarrow 25\mu = 100 \Longrightarrow \mu = 4$ Substituting for in equation (2) gives: $3 \times 4 + 4\lambda = 0 \Longrightarrow \lambda = -3$ So a particular integral is $y = 4\sin 2x - 3\cos 2x$ The general solution is $y = (A + Bx)e^{-x} + 4\sin 2x - 3\cos 2x$.

g Solving the corresponding homogeneous equation $\frac{d^2 y}{dx^2} + 81y = 0$ The auxiliary equation is $m^2 + 81 = 0$ $m = \pm 9i$ The complementary function is $y = A\cos 9x + B\sin 9x$ The particular integral is $y = \lambda e^{3x}$, so $\frac{dy}{dx} = 3\lambda e^{3x}$ and $\frac{d^2 y}{dx^2} = 9\lambda e^{3x}$ Substituting into $\frac{d^2 y}{dx^2} + 81y = 15e^{3x}$ gives: $9\lambda e^{3x} + 81\lambda e^{3x} = 15e^{3x} \Rightarrow 90\lambda e^{3x} = 15e^{3x} \Rightarrow \lambda = \frac{15}{90} = \frac{1}{6}$

So a particular integral is $\frac{1}{6}e^{3x}$

The general solution is $y = A\cos 9x + B\sin 9x + \frac{1}{6}e^{3x}$

If the auxiliary equation has imaginary roots, the complementary function is of the form $A\cos\omega x + B\sin\omega x$

1 h Solving the corresponding homogeneous equation $\frac{d^2y}{dx^2} + 4y = 0$ The auxiliary equation is $m^2 + 4 = 0$ $m = \pm 2i$ The complementary function is $y = A\cos 2x + B\sin 2x$ The particular integral is $y = \lambda \cos x + \mu \sin x$ $\frac{\mathrm{d}y}{\mathrm{d}x} = -\lambda\sin x + \mu\cos x$ $\frac{d^2 y}{dx^2} = -\lambda \cos x - \mu \sin x$ Substituting into $\frac{d^2y}{dx^2} + 4y = \sin x$ gives: Then $-\lambda \cos x - \mu \sin x + 4(\lambda \cos x + \mu \sin x) = \sin x$ Equating the coefficients of $\cos x$: $3\lambda = 0 \Longrightarrow \lambda = 0$ Equating the coefficients of sin x: $3\mu = 1 \Rightarrow \mu = \frac{1}{2}$ So a particular integral is $\frac{1}{2} \sin x$ The general solution is $y = A\cos 2x + B\sin 2x + \frac{1}{2}\sin x$ i Solving the corresponding homogeneous equation $\frac{d^2y}{dr^2} - 4\frac{dy}{dr} + 5y = 0$ The auxiliary equation is If the auxiliary equation has complex roots, the complementary function is $m^2 - 4m + 5 = 0$ $m = \frac{4 \pm \sqrt{16 - 20}}{2} = 2 \pm i$ of the form $e^{px}(A\cos ax + B\sin ax)$ The complementary function is $y = e^{2x}(A\cos x + B\sin x)$ The particular integral is $y = \lambda + \mu x + \upsilon x^2$, so $\frac{dy}{dx} = \mu + 2\upsilon x$ and $\frac{d^2y}{dx^2} = 2\upsilon$ Substituting into $\frac{d^2 y}{dx^2} - 4 \frac{dy}{dx} + 5y = 25x^2 - 7$ gives: $2\upsilon - 4(\mu + 2\upsilon x) + 5(\lambda + \mu x + \upsilon x^2) = 25x^2 - 7$ $\Rightarrow 5\upsilon x^2 + (5\mu - 8\upsilon)x + 2\upsilon - 4\mu + 5\lambda = 25x^2 - 7$ Equating the coefficients of x^2 : $5v = 25 \implies v = 5$ Equating the coefficients of x: $5\mu - 8\nu = 0 \Longrightarrow 5\mu = 8\nu = 40 \Longrightarrow \mu = 8$ Equating constant terms: $2\nu - 4\mu + 5\lambda = -7 \Rightarrow 10 - 32 + 5\lambda = -7 \Rightarrow 5\lambda = 15 \Rightarrow \lambda = 3$ So the particular integral is $3+8x+5x^2$ The general solution is $y = e^{2x} (A \cos x + B \sin x) + 3 + 8x + 5x^2$

1 j Solving the corresponding homogeneous equation $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 26y = 0$ The auxiliary equation is $m^2 - 2m + 26 = 0$ $m = \frac{2 \pm \sqrt{4 - 4 \times 26}}{2} = \frac{2 \pm \sqrt{-100}}{2} = 1 \pm 5i$ The complementary function is $y = e^x (A\cos 5x + B\sin 5x)$ The particular integral is $y = \lambda e^x$, so $\frac{dy}{dx} = \lambda e^x$ and $\frac{d^2y}{dx^2} = \lambda e^x$ Substitute into $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 26y = e^x$ $\lambda e^x - 2\lambda e^x + 26\lambda e^x = 1$ $\Rightarrow 25\lambda = 1 \Rightarrow \lambda = \frac{1}{25}$

25 So the particular integral is $\frac{1}{25}e^x$ The general solution is $y = e^x(A\cos 5x + B\sin 5x) + \frac{1}{25}e^x$

2 a Consider a particular integral of the form $y = vx^2 + \mu x + \lambda$, so $\frac{dy}{dx} = \mu + 2vx$ and $\frac{d^2y}{dx^2} = 2v$

Substituting into $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 4y = x^2 - 3x + 2$ gives: $2v - 5(\mu + 2vx) + 4(\lambda + \mu x + vx^2) = x^2 - 3x + 2$ $\Rightarrow 4vx^2 + (4\mu - 10v)x + 2v - 5\mu + 4\lambda = x^2 - 3x + 2$ Equating the coefficients of x^2 : $4v = 1 \Rightarrow v = \frac{1}{4}$ Equating the coefficients of x: $4\mu - 10v = -3 \Rightarrow 4\mu = 10v - 3 \Rightarrow \mu = -\frac{1}{8}$ Equating constant terms: $2v - 5\mu + 4\lambda = 2 \Rightarrow \frac{1}{2} + \frac{5}{8} + 4\lambda = 2 \Rightarrow 4\lambda = \frac{7}{8} \Rightarrow \lambda = \frac{7}{32}$ So the particular integral is $\frac{1}{4}x^2 - \frac{1}{8}x + \frac{7}{32}$

b Solving the corresponding homogeneous equation $\frac{d^2 y}{dx^2} - 2\frac{dy}{dx} + 26y = 0$ The auxiliary equation is

 $m^{2} - 5m + 4 = 0$ (m-4)(m-1) = 0 m = 1 or 4 So the complementary function is $y = Ae^{4x} + Be^{x}$

The general solution of the given equation is $y = Ae^{4x} + Be^{x} + \frac{1}{4}x^{2} - \frac{1}{8}x + \frac{7}{32}$

3 a The complementary function is the general solution of the equation $\frac{d^2y}{dx^2} - 6\frac{dy}{dx} = 0$ The auxiliary equation is

 $m^{2} - 6m = 0$ m(m - 6) = 0m = 0 or 6

So the complementary function is $y = Ae^{6x} + Be^{0x} = Ae^{6x} + B$

b As the complementary function includes a constant term, multiply the 'expected' particular integral by x, so consider a particular integral of the form $y = vx^3 + \mu x^2 + \lambda x$

$$\frac{dy}{dx} = 3\upsilon x^{2} + 2\mu x + \lambda \text{ and } \frac{d^{2}y}{dx^{2}} = 6\upsilon x + 2\mu$$
Substituting into $\frac{d^{2}y}{dx^{2}} - 6\frac{dy}{dx} = 2x^{2} - x + 1$ gives:
 $6\upsilon x + 2\mu - 6(3\upsilon x^{2} + 2\mu x + \lambda) = 2x^{2} - x + 1$
 $\Rightarrow -18\upsilon x^{2} + (6\upsilon - 12\mu)x + 2\mu - 6\lambda = 2x^{2} - x + 1$
Equating the coefficients of x^{2} : $-18\upsilon = 2 \Rightarrow \upsilon = -\frac{1}{9}$
Equating the coefficients of x : $6\upsilon - 12\mu = -1 \Rightarrow 12\mu = 6\upsilon + 1 \Rightarrow 12\mu = \frac{1}{3} \Rightarrow \mu = \frac{1}{36}$
Equating constant terms: $2\mu - 6\lambda = 1 \Rightarrow 6\lambda = -\frac{34}{36} \Rightarrow \lambda = \frac{17}{108}$
So the particular integral is $-\frac{1}{9}x^{3} + \frac{1}{36}x^{2} + \frac{17}{108}x$
The general solution is $y = Ae^{6x} + B - \frac{1}{9}x^{3} + \frac{1}{36}x^{2} + \frac{17}{108}x$

4 The complementary function is the general solution of the equation $\frac{d^2 y}{dx^2} + 4\frac{dy}{dx} = 0$

The auxiliary equation is

 $m^{2} + 4m = 0$ m(m+4) = 0m = 0 or -4

So the complementary function is $y = A + Be^{-4x}$

As the complementary function includes a constant term, multiply the 'expected' particular integral by x, so consider a particular integral of the form $y = vx^3 + \mu x^2 + \lambda x$

$$\frac{dy}{dx} = 3\upsilon x^2 + 2\mu x + \lambda \text{ and } \frac{d^2 y}{dx^2} = 6\upsilon x + 2\mu$$
Substituting into $\frac{d^2 y}{dx^2} + 4\frac{dy}{dx} = 24x^2$ gives:
 $6\upsilon x + 2\mu + 4(3\upsilon x^2 + 2\mu x + \lambda) = 24x^2$
 $\Rightarrow 12\upsilon x^2 + (6\upsilon + 8\mu)x + 2\mu + 4\lambda = 24x^2$
Equating the coefficients of x^2 : $12\upsilon = 24 \Rightarrow \upsilon = 2$

Equating the coefficients of x: $6\nu + 8\mu = 0 \Rightarrow 8\mu = -12 \Rightarrow \mu = -\frac{3}{2}$

Equating constant terms: $2\mu + 4\lambda = 0 \Rightarrow 4\lambda = 3 \Rightarrow \lambda = \frac{3}{4}$

So the particular integral is $2x^3 - \frac{3}{2}x^2 + \frac{3}{4}x$

The general solution is
$$y = A + Be^{-4x} + 2x^3 - \frac{3}{2}x^2 + \frac{3}{4}x$$

5 a Solving the corresponding homogeneous equation $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = 0$

The auxiliary equation is

 $m^{2} - 2m + 1 = 0$ (m-1)(m-1) = 0m = 1So the complement

So the complementary function is $y = (A + Bx)e^x$

The complementary function contains an xe^x and so λxe^x is not a suitable form for the particular integral of this equation.

Note that if $y = \lambda x e^x$, then $\frac{dy}{dx} = \lambda e^x + \lambda x e^x$ and $\frac{d^2 y}{dx^2} = 2\lambda e^x + \lambda x e^x$ Substituting into $\frac{d^2 y}{dx^2} - 2\frac{dy}{dx} + y = e^x$ gives: $2\lambda e^x + \lambda x e^x - 2(\lambda e^x + \lambda x e^x) + \lambda x e^x = e^x$ $\Rightarrow 0 = e^x$, which is impossible as $e^x > 0$

5 **b** if
$$y = \lambda x^2 e^x$$
, then $\frac{dy}{dx} = 2\lambda x e^x + \lambda x^2 e^x$ and $\frac{d^2 y}{dx^2} = 2\lambda e^x + 4\lambda x e^x + \lambda x^2 e^x$
Substituting into $\frac{d^2 y}{dx^2} - 2\frac{dy}{dx} + y = e^x$ gives:
 $2\lambda e^x + 4\lambda x e^x + \lambda x^2 e^x - 2(2\lambda x e^x + \lambda x^2 e^x) + \lambda x^2 e^x = e^x$
 $\Rightarrow 2\lambda e^x = e^x \Rightarrow \lambda = \frac{1}{2}$

c The general solution is the complementary function (from part **a**) plus the particular integral (from part **b**), so it is

$$y = (A + Bx)e^{x} + \frac{1}{2}x^{2}e^{x} = \left(A + Bx + \frac{1}{2}x^{2}\right)e^{x}$$

6 a Solving the corresponding homogeneous equation $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 3y = 0$

The auxiliary equation is

$$m^2 + 4m + 3 = 0$$

 $(m+3)(m+1) = 0$

m = -1 or -3

So the complementary function is $y = Ae^{-t} + Be^{-3t}$

The form of the particular integral is $y = \lambda + \mu t$, so $\frac{dy}{dt} = \mu$, $\frac{d^2y}{dt^2} = 0$ Substituting into $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 3y = kt + 5$ gives: $4\mu + 3\lambda + 3\mu t = kt + 5$ Equating the coefficients of t: $3\mu = k \Rightarrow \mu = \frac{k}{3}$ Equating constant terms: $4\mu + 3\lambda = 5 \Rightarrow 3\lambda = 5 - \frac{4k}{3} \Rightarrow \lambda = \frac{5}{3} - \frac{4k}{9}$ So the particular integral is $\frac{5}{3} - \frac{4k}{9} + \frac{k}{3}t$ The general solution is $y = Ae^{-t} + Be^{-3t} + \frac{5}{3} - \frac{4k}{9} + \frac{kt}{3}$

b If k = 6, then the general solution is $y = Ae^{-t} + Be^{-3t} + 2t - 1$. As $t \to \infty$, $e^{-t} \to 0$, so for large values of t the general solution may be approximated by y = 2t - 1

Challenge

Solving the corresponding homogeneous equation $\frac{d^2y}{dt^2} + y = 0$ The auxiliary equation is $m^2 + 1 = 0 \Rightarrow m = \pm i$ So the complementary function is $y = A\cos x + B\sin x$

To find a particular integral, consider functions of the form $y = \lambda x e^{2x} + \mu e^{2x}$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \lambda e^{2x} + 2\lambda x e^{2x} + 2\mu e^{2x}$$
$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2\lambda e^{2x} + 2\lambda e^x + 4\lambda x e^{2x} + 4\mu e^{2x} = 4\lambda e^{2x} + 4\lambda x e^{2x} + 4\mu e^{2x}$$

Substituting into $\frac{d^2 y}{dx^2} + y = 5xe^{2x}$ gives: $4\lambda e^{2x} + 4\lambda xe^{2x} + 4\mu e^{2x} + \lambda xe^{2x} + \mu e^{2x} = 5xe^{2x}$ $\Rightarrow (4\lambda + 5\mu)e^{2x} + 5\lambda xe^{2x} = 5xe^{2x}$

Equating the coefficients of xe^{2x} : $5\lambda = 5 \Rightarrow \lambda = 1$ Equating the coefficients of e^{2x} : $4\lambda + 5\mu = 0 \Rightarrow \mu = -\frac{4}{5}$ So the particular integral is $xe^{2x} - \frac{4}{5}e^{2x}$

The general solution is $y = A\cos x + B\sin x + xe^{2x} - \frac{4}{5}e^{2x}$