Methods in differential equations - mixed exercise 7

1 The integrating factor is $e^{\int \tan x dx} = e^{\ln \sec x} = \sec x$ Multiplying the equation by this factor gives:

$$\sec x \frac{\mathrm{d}y}{\mathrm{d}x} + y \sec x \tan x = 2 \sec^2 x$$

$$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x}(y\sec x) = 2\sec^2 x$$

$$\Rightarrow y \sec x = \int 2 \sec^2 x \, dx = 2 \tan x + c$$

$$\Rightarrow y = 2\sin x + c\cos x$$

2 Rewrite the equation as $\frac{dy}{dx} + \frac{x}{1 - x^2}y = \frac{5x}{1 - x^2}$

The integrating factor is $e^{\int \frac{x}{1-x^2} dx} = e^{-\frac{1}{2}\ln(1-x^2)} = e^{\ln(1-x^2)^{-\frac{1}{2}}} = (1-x^2)^{-\frac{1}{2}}$

Multiplying the equation by this factor gives:

$$\frac{1}{(1-x^2)^{\frac{1}{2}}}\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{x}{(1-x^2)^{\frac{3}{2}}}y = \frac{5x}{(1-x^2)^{\frac{3}{2}}}$$

$$\Rightarrow \frac{dy}{dx} \frac{y}{(1-x^2)^{\frac{1}{2}}} = \frac{5x}{(1-x^2)^{\frac{3}{2}}}$$

$$\Rightarrow \frac{y}{(1-x^2)^{\frac{1}{2}}} = \int \frac{5x}{(1-x^2)^{\frac{3}{2}}} dx$$

$$\Rightarrow \frac{y}{(1-x^2)^{\frac{1}{2}}} = \frac{5}{(1-x^2)^{\frac{1}{2}}} + c$$

So
$$y = 5 + c(1 - x^2)^{\frac{1}{2}}$$

3 Rewrite the equation as $x \frac{dy}{dx} + y = -x$

The left-hand side is the derivative of the product xy, so the equation is equivalent to

$$\frac{\mathrm{d}}{\mathrm{d}x}(xy) = -x$$

$$\Rightarrow xy = -\int x dx = -\frac{x^2}{2} + c$$

So
$$y = -\frac{x}{2} + \frac{c}{x}$$

4 The integrating factor is $e^{\int \frac{1}{x} dx} = e^{\ln x} = x$ Multiplying the equation by this factor gives:

$$x \frac{dy}{dx} + y = x\sqrt{x}$$

$$\Rightarrow \frac{d}{dx}(xy) = x\sqrt{x}$$

$$\Rightarrow xy = \int x\sqrt{x} dx = \frac{2}{5}x^{\frac{5}{2}} + c$$
So $y = \frac{2}{5}x^{\frac{3}{2}} + \frac{c}{x}$

5 The integrating factor is $e^{\int 2x dx} = e^{x^2}$ Multiplying the equation by this factor gives:

$$e^{x^{2}} \frac{dy}{dx} + 2xe^{x^{2}}y = xe^{x^{2}}$$

$$\Rightarrow \frac{d}{dx}(e^{x^{2}}y) = xe^{x^{2}}$$

$$\Rightarrow e^{x^{2}}y = \int xe^{x^{2}}dx = \frac{1}{2}e^{x^{2}} + c$$
So $y = \frac{1}{2} + ce^{-x^{2}}$

6 Rewrite the equation in the form $\frac{dy}{dx} + \frac{2x^2 - 1}{x(1 - x^2)}y = \frac{2x^2}{(1 - x^2)}$

The integrating factor is $e^{\int \frac{2x^2-1}{x(1-x^2)} dx}$ and this simplifies as follows:

$$\int \frac{2x^2 - 1}{x(1 - x^2)} dx = \int \frac{3x^2 - 1 - x^2}{x - x^3} dx = \int \frac{3x^2 - 1}{x - x^3} - \frac{x}{1 - x^2} dx$$

$$= -\ln(x - x^3) + \frac{1}{2}\ln(1 - x^2) = \ln(1 - x^2)^{\frac{1}{2}} - \ln(x - x^3)$$

$$= \ln\left(\frac{(1 - x^2)^{\frac{1}{2}}}{(x - x^3)}\right) = \ln\left(\frac{1}{x(1 - x^2)^{\frac{1}{2}}}\right)$$

So the integrating factor simplifies to $\frac{1}{x(1-x^2)^{\frac{1}{2}}}$

Multiplying the equation by this factor gives:

$$\frac{1}{x(1-x^2)^{\frac{1}{2}}} \frac{dy}{dx} + \frac{2x^2 - 1}{x^2 (1-x^2)^{\frac{3}{2}}} y = \frac{2x}{(1-x^2)^{\frac{3}{2}}}$$

$$\Rightarrow \frac{d}{dx} \left(\frac{y}{x(1-x^2)^{\frac{1}{2}}} \right) = \frac{2x}{(1-x^2)^{\frac{3}{2}}}$$

$$\Rightarrow \frac{y}{x(1-x^2)^{\frac{1}{2}}} = \int \frac{2x}{(1-x^2)^{\frac{3}{2}}} dx = \frac{2}{(1-x^2)^{\frac{1}{2}}} + c$$
So $y = 2x + cx(1-x^2)^{\frac{1}{2}} = 2x + cx\sqrt{1-x^2}$

7 **a** Given that $\frac{dy}{dx} - ay = ke^{\lambda x}$, the integrating factor is $e^{\int -a \, dx} = e^{-ax}$

Multiplying the equation by this factor gives:

$$e^{-ax} \frac{dy}{dx} - ae^{-ax} y = ke^{\lambda x} e^{-ax}$$

$$\Rightarrow \frac{d}{dx} (ye^{-ax}) = ke^{\lambda x} e^{-ax}$$

$$\Rightarrow ye^{-ax} = \int ke^{(\lambda - a)x} dx = \frac{ke^{(\lambda - a)x}}{\lambda - a} e^{(\lambda - a)x} + c$$
So $y = \frac{ke^{(\lambda - a)x}e^{ax}}{\lambda - a} + ce^{ax} = \frac{ke^{\lambda x}}{\lambda - a} + ce^{ax}$ for $\lambda \neq a$

b When $Q(x) = kx^n e^{ax}$

$$\frac{\mathrm{d}}{\mathrm{d}x}(y\mathrm{e}^{-ax}) = k\mathrm{e}^{\lambda x}\mathrm{e}^{ax}\mathrm{e}^{-ax} = k\mathrm{e}^{\lambda x}$$

$$\Rightarrow ye^{-ax} = \int kx^n dx = \frac{kx^{n+1}}{n+1} + c$$

So
$$y = \frac{kx^{n+1}}{n+1}e^{ax} + ce^{ax}$$

8 Rewrite the equation in the form $\frac{dy}{dx} + \frac{y}{\tan x} = 2\cos x$

The integrating factor is $e^{\int \frac{1}{\tan x} dx} = e^{\int \cot x dx} = e^{\ln \sin x} = \sin x$

Multiplying both sides by this factor gives:

$$\sin x \frac{\mathrm{d}y}{\mathrm{d}x} + y \cos x = 2 \cos x \sin x = \sin 2x$$

using a trigonometric identity

$$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x}(y\sin x) = \sin 2x$$

$$\Rightarrow y \sin x = \int \sin 2x dx = -\frac{1}{2} \cos 2x + c = -\frac{1}{2} + \sin^2 x + c \quad \text{using } \cos 2x = 1 - \sin^2 x$$

using
$$\cos 2x = 1 - \sin^2 x$$

So
$$y = \sin x + A \csc x$$

defining
$$A = c - \frac{1}{2}$$

Note that without making the simplification using $\cos 2x = 1 - \sin^2 x$, an alternative but correct answer is obtained.

$$y\sin x = \int \sin 2x \, \mathrm{d}x = -\frac{1}{2}\cos 2x + c$$

$$\Rightarrow y = -\frac{1}{2}\cos 2x \csc x + c \csc x$$

9 a The integrating factor is $e^{\int \tan x \, dx} = e^{\ln \sec x} = \frac{1}{\cos x}$

Multiplying both sides by this factor gives:

$$\left(\frac{1}{\cos x}\right)\frac{\mathrm{d}y}{\mathrm{d}x} + y\frac{\sin x}{\cos^2 x} = \mathrm{e}^x$$

$$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{y}{\cos x} \right) = \int \mathrm{e}^x \, \mathrm{d}x$$

$$\Rightarrow \frac{y}{\cos x} = e^x + c$$

So
$$y = e^x \cos x + c \cos x$$

b When $x = \pi$, y = 1 so $-e^{\pi} - c = 1 \Rightarrow c = -e^{\pi} - 1$

So
$$y = e^x \cos x - (1 + e^{\pi}) \cos x$$

10 The integrating factor is $e^{\int -3dx} = e^{-3x}$

Multiplying the equation by this factor gives:

$$e^{-3x} \frac{dy}{dx} - 3e^{-3x} y = e^{-3x} \sin x$$

$$\Rightarrow \frac{d}{dx} (e^{-3x} y) = e^{-3x} \sin x$$

$$\Rightarrow e^{-3x} y = \int e^{-3x} \sin x dx$$
(1)

The expression $e^{-3x} \sin x$ can be integrated by using integration by parts twice

$$\int e^{-3x} \sin x \, dx = -\frac{1}{3} e^{-3x} \sin x + \int \frac{1}{3} e^{-3x} \cos x \, dx \qquad \text{using integration by parts with } u = \sin x, v = -\frac{1}{3} e^{x}$$

$$= -\frac{1}{3} e^{-3x} \sin x - \frac{1}{9} e^{-3x} \cos x - \int \frac{1}{9} e^{-3x} \sin x \, dx \qquad \text{this time with } u = \cos x, v = -\frac{1}{9} e^{x}$$

Simplifying this equation gives:

$$\frac{10}{9} \int e^{-3x} \sin x \, dx = -\frac{1}{3} e^{-3x} \sin x - \frac{1}{9} e^{-3x} \cos x$$
$$\Rightarrow \int e^{-3x} \sin x \, dx = -\frac{3}{10} e^{-3x} \sin x - \frac{1}{10} e^{-3x} \cos x$$

Using this expression in equation (1) and adding in a constant gives:

$$e^{-3x}y = \int e^{-3x} \sin x \, dx = -\frac{3}{10} e^{-3x} \sin x - \frac{1}{10} e^{-3x} \cos x + c$$
So $y = -\frac{3}{10} \sin x - \frac{1}{10} \cos x + c e^{3x}$

Applying the condition that when
$$x = 0$$
, $y = 0$ so $-\frac{1}{10} + c = 0 \Rightarrow c = \frac{1}{10}$
So the solution is $y = -\frac{3}{10}\sin x - \frac{1}{10}\cos x + \frac{1}{10}e^{3x}$

11 a Separating the variables and integrating:

$$\frac{dy}{dx} = y \sinh x$$

$$\Rightarrow \int \frac{1}{y} dy = \int \sinh x dx$$

$$\Rightarrow \ln y = \cosh x + c \quad \text{where } c \text{ is a constant}$$

$$\Rightarrow y = e^{\cosh x + c} = e^c \times e^{\cosh x}$$

$$\Rightarrow y = Ae^{\cosh x} \quad \text{where } A \text{ is a constant } (A = e^c)$$

b When
$$x = 0$$
, $y = 1$ so $Ae = 1 \Rightarrow A = e^{-1}$
So the solution is $y = e^{-1}e^{\cosh x} = e^{\cosh x-1}$

12 Separating the variables and integrating:

$$\frac{dy}{dx} = x(4 - y^2)$$

$$\Rightarrow \int \frac{1}{4 - y^2} dy = \int x dx$$

$$\Rightarrow \int \frac{1}{(2 - y)(2 + y)} dy = \int x dx$$

$$\Rightarrow \frac{1}{4} \int \frac{1}{(2 - y)} + \frac{1}{(2 + y)} dy = \int x dx$$

$$\Rightarrow -\frac{1}{4} \ln(2 - y) + \frac{1}{4} \ln(2 + y) = \frac{1}{2} x^2 + c$$

$$\Rightarrow \ln\left(\frac{2 + y}{2 - y}\right)^{\frac{1}{4}} = \frac{1}{2} x^2 + c$$

rearranging the left-hand side so that it is easier to integrate

 $\Rightarrow \ln\left(\frac{2+y}{2-y}\right)^4 = \frac{1}{2}x^2 + c$ $\Rightarrow \left(\frac{2+y}{2-y}\right)^{\frac{1}{4}} = e^{\frac{1}{2}x^2 + c} = Ae^{\frac{x^2}{2}}$

simplifying using the rules of logarithms

 $\Rightarrow \frac{2+y}{2-y} = Ce^{2x^2}$

taking the power of 4 of each side

 $\Rightarrow 2 + y = 2Ce^{2x^2} - yCe^{2x^2}$

rearranging to find an expression in y

$$\Rightarrow y = \frac{2Ce^{2x^2} - 2}{Ce^{2x^2} + 1}$$

When
$$x = 0$$
, $y = 1$ so $\frac{2C - 2}{C + 1} = 1 \Rightarrow 2C - 2 = C + 1 \Rightarrow C = 3$

So the solution is
$$y = \frac{6e^{2x^2} - 2}{3e^{2x^2} + 1} = \frac{2(3e^{2x^2} - 1)}{3e^{2x^2} + 1}$$

13 The auxiliary equation is

$$m^{2} + m + 1 = 0$$

$$m = \frac{-1 \pm \sqrt{1 - 4}}{2} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$$

 $m = \frac{-1 \pm \sqrt{1 - 4}}{2} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$ So the general solution is $y = e^{-\frac{1}{2}x} \left(A\cos\frac{\sqrt{3}}{2}x + B\sin\frac{\sqrt{3}}{2}x \right)$

If the auxiliary equation has complex roots, the solution is of the form

 $y = e^{px} (A\cos qx + B\sin qx)$

14 The auxiliary equation is

$$m^2 - 12m + 36 = 0$$

$$(m-6)(m-6)=0$$

$$m-6$$

So the general solution is $y = (A + Bx)e^{6x}$

If the auxiliary equation has a repeated solution, the solution is of the form

$$y = (A + Bx)e^{\alpha x}$$

15 The auxiliary equation is

$$m^2 - 4m = 0$$

$$m(m-4)=0$$

$$m = 0 \text{ or } 4$$

So the general solution is $y = Ae^{0x} + Be^{4x} = A + Be^{4x}$

16 The auxiliary equation is $m^2 + k^2 = 0 \Rightarrow m = \pm ik$

The general solution is $y = A\cos kx + B\sin kx$

When
$$x = 0$$
, $y = 1$ so $A = 1$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -kA\sin kx + kB\cos kx$$

When
$$x = 0$$
, $\frac{dy}{dx} = 1$ so $kB = 1 \Rightarrow B = \frac{1}{k}$

Substituting values for A and B into the general solution gives the particular solution

$$y = \cos kx + \frac{1}{k}\sin kx$$

17 The auxiliary equation is

$$m^2 - 2m + 10 = 0$$

$$m = \frac{2 \pm \sqrt{4 - 40}}{2} = \frac{2 \pm \sqrt{-36}}{2} = 1 \pm 3i$$

The general solution is $y = e^x (A\cos 3x + B\sin 3x)$

When
$$x = 0$$
, $y = 0$ so $A = 0$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^x B \sin 3x + 3\mathrm{e}^x B \cos 3x$$

When
$$x = 0$$
, $\frac{dy}{dx} = 3$ so $3B = 3 \Rightarrow B = 1$

Substituting values for A and B into the general solution gives the particular solution

$$y = e^x \sin 3x$$

18 a
$$y = ke^{2x}$$
 so $\frac{dy}{dx} = ke^{2x} + 2kxe^{2x}$ and $\frac{d^2y}{dx^2} = 4ke^{2x} + 4kxe^{2x}$

Substituting into
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 13y = e^{2x}$$
 gives:

$$4ke^{2x} + 4kxe^{2x} - 4(ke^{2x} + 2kxe^{2x}) + 13kxe^{2x} = e^{2x}$$

$$\Rightarrow 9ke^{2x} = e^{2x} \Rightarrow k = \frac{1}{9}$$

So a particular integral is $\frac{1}{9}e^{2x}$

If the auxiliary equation has imaginary solutions, and the general solution has the form

 $y = A\cos\omega x + B\sin\omega x$.

18 b Solving the corresponding homogeneous equation $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 13y = 0$

The auxiliary equation is

$$m^2 - 4m + 13 = 0$$

$$m = \frac{4 \pm \sqrt{16 - 52}}{2} = \frac{4 \pm \sqrt{-36}}{2} = 2 \pm 3i$$

So the complementary function is $y = e^{2x} (A\cos 3x + B\sin 3x)$

Using the particular integral from part **a**, the general solution is $y = e^{2x}(A\cos 3x + B\sin 3x) + \frac{1}{9}e^{2x}$

19 Solving the corresponding homogeneous equation $\frac{d^2y}{dx^2} - y = 0$

The auxiliary equation is

$$m^2 - 1 = 0$$

$$(m+1)(m-1)=0$$

$$m = 1 \text{ or } -1$$

So the complementary function is $y = Ae^x + Be^{-x}$

As the complementary function has an e^x term, try a particular integral in the form $\lambda x e^x$

So
$$\frac{dy}{dx} = \lambda e^x + \lambda x e^x$$
 and $\frac{d^2y}{dx^2} = 2\lambda e^x + \lambda x e^x$

Substituting into $\frac{d^2y}{dx^2} - y = 4e^x$ gives:

$$2\lambda e^x + \lambda x e^x - \lambda x e^x = 4e^x$$

$$\Rightarrow 2\lambda e^x = 4e^x \Rightarrow \lambda = 2$$

So a particular integral is $2xe^x$

The general solution is $y = Ae^x + Be^{-x} + 2xe^x$

20 a Solving the corresponding homogeneous equation $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = 0$

The auxiliary equation is

$$m^2 - 4m + 4 = 0$$

$$(m-2)(m-2)=0$$

$$m = 2$$

So the complementary function is $y = (A + Bx)e^{2x}$

b As the complementary function has e^{2x} and xe^{2x} terms, these cannot be terms in the particular integral.

20 c
$$y = kx^2 e^{2x}$$
, so $\frac{dy}{dx} = 2kx^2 e^{2x} + 2kxe^{2x}$

$$\frac{d^2y}{dx^2} = 4kx^2e^{2x} + 4kxe^{2x} + 4kxe^{2x} + 2ke^{2x} = 4kx^2e^{2x} + 8kxe^{2x} + 2ke^{2x}$$

Substituting into
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = 4e^{2x}$$
 gives:

$$(4kx^2 + 8kx + 2k - 8kx^2 - 8kx + 4kx^2)e^{2x} = 4e^{2x}$$

$$\Rightarrow 2ke^{2x} = 4e^{2x} \Rightarrow k = 2$$

So a particular interval is $2x^2e^{2x}$

Using the complementary function from part **a**, the general solution is $y = (A + Bx + 2x^2)e^{2x}$

21 Solving the corresponding homogeneous equation $\frac{d^2y}{dt^2} + 4y = 0$

The auxiliary equation is $m^2 + 4 = 0 \Rightarrow m = \pm 2i$

So the complementary function is $y = A\cos 2t + B\sin 2t$

The form of the particular integral is $y = \lambda \cos 3t + \mu \sin 3t$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = -3\lambda \sin 3t + 3\mu \cos 3t \text{ and } \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = -9\lambda \cos 3t - 9\mu \sin 3t$$

Substituting into $\frac{d^2y}{dt^2} + 4y = 5\cos 3t$ gives:

$$-9\lambda\cos 3t - 9\mu\sin 3t + 4\lambda\cos 3t + 4\mu\sin t = 5\cos 3t$$

$$\Rightarrow -5\lambda\cos 3t - 5\mu\sin 3t = 5\cos 3t$$

$$\Rightarrow \lambda = -1 \text{ and } \mu = 0$$

So a particular integral is $-\cos 3t$

The general solution is $y = A\cos 2t + B\sin 2t - \cos 3t$

When
$$t = 0$$
, $y = 1$ so $A - 1 = 1 \Rightarrow A = 2$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = -2A\sin 2t + 2B\cos 2t + 3\sin 3t$$

When
$$t = 0$$
, $\frac{dy}{dt} = 2$ so $2B = 2 \Rightarrow B = 1$

Substituting values for *A* and *B* into the general solution gives the particular solution $y = 2\cos 2t + \sin 2t - \cos 3t$

22 a Let
$$y = \lambda + \mu x + kxe^{2x}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mu + 2kx\mathrm{e}^{2x} + k\mathrm{e}^{2x}$$

$$\frac{d^2y}{dx^2} = 4kxe^{2x} + 2ke^{2x} + 2ke^{2x} = 4kxe^{2x} + 4ke^{2x}$$

Substituting into
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 4x + e^{2x}$$
 gives:

$$4kxe^{2x} + 4ke^{2x} - 3\mu - 6kxe^{2x} - 3ke^{2x} + 2\lambda + 2\mu x + 2kxe^{2x} = 4x + e^{2x}$$

$$\Rightarrow ke^{2x} + 2\mu x + 2\lambda - 3\mu = 4x + e^{2x}$$

Equating the coefficients of e^{2x} : k = 1

Equating the coefficients of x: $2\mu = 4 \Rightarrow \mu = 2$

Equating constants: $2\lambda - 3\mu = 0 \Rightarrow \lambda = 3$

So a particular integral is $3 + 2x + xe^{2x}$

b Solving the corresponding homogeneous equation $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 0$

The auxiliary equation is

$$m^2 - 3m + 2 = 0$$

$$(m-2)(m-1)=0$$

$$m = 1 \text{ or } 2$$

So the complementary function is $y = Ae^x + Be^{2x}$

Using the particular integral from part a, the general solution is

$$y = Ae^{x} + Be^{2x} + 3 + 2x + xe^{2x} = Ae^{x} + (B+x)e^{2x} + 2x + 3$$

23 a Solving the corresponding homogeneous equation $16\frac{d^2y}{dx^2} + 8\frac{dy}{dx} + 5y = 0$

The auxiliary equation is

$$16m^2 + 8m + 5 = 0$$

$$m = \frac{-8 \pm \sqrt{64 - 320}}{32} = -\frac{1}{4} \pm \frac{\sqrt{-256}}{32} = -\frac{1}{4} \pm \frac{1}{2}i$$

So the complementary function is $y = e^{-\frac{1}{4}x} \left(A \cos \frac{1}{2} x + B \sin \frac{1}{2} x \right)$

The particular integral has the form $y = \lambda x + \mu$, so $\frac{dy}{dx} = \lambda$ and $\frac{d^2y}{dx^2} = 0$

Substituting into $16\frac{d^2y}{dx^2} + 8\frac{dy}{dx} + 5y = 5x + 23$ gives:

$$8\lambda + 5\lambda x + 5\mu = 5x + 23$$

Equating the coefficients of x: $5\lambda = 5 \Rightarrow \lambda = 1$

Equating constant terms: $8\lambda + 5\mu = 23 \Rightarrow \mu = 3$

23 a So a particular integral is x+3

The general solution is
$$y = e^{-\frac{1}{4}x} \left(A\cos\frac{1}{2}x + B\sin\frac{1}{2}x \right) + x + 3$$

When
$$x = 0$$
, $y = 3$ so $A + 3 = 3 \implies A = 0$

$$\frac{dy}{dx} = -\frac{1}{4}e^{-\frac{1}{4}x} \left(A\cos\frac{1}{2}x + B\sin\frac{1}{2}x \right) - \frac{1}{2}e^{-\frac{1}{4}x} \left(A\sin\frac{1}{2}x + B\cos\frac{1}{2}x \right) + 1$$

When
$$x = 0$$
, $\frac{dy}{dx} = 3$ so $-\frac{1}{4}A + \frac{1}{2}B + 1 = 3$

As
$$A = 0 \Rightarrow B = 4$$

Substituting values for A and B into the general solution gives the particular solution

$$y = 4e^{-\frac{1}{4}x}B\sin\frac{1}{2}x + x + 3$$

b As $x \to \infty$, $e^{-\frac{1}{4}x} \to 0$ so $y \to x+3$

Therefore $y \approx x + 3$ for large values of x.

24 Solving the corresponding homogeneous equation $\frac{d^2y}{dx^2} - \frac{dy}{dx} - 6y = 0$

The auxiliary equation is

$$m^2 - m - 6 = 0$$

$$(m-3)(m+2)=0$$

$$m = 3 \text{ or } -2$$

So the complementary function is $y = Ae^{3x} + Be^{-2x}$

The particular integral is of the form $y = \lambda \sin 3x + \mu \cos 3x$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\lambda\cos 3x - 3\mu\sin 3x$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -9\lambda \sin 3x - 9\mu \cos 3x$$

Substituting into $\frac{d^2y}{dx^2} - \frac{dy}{dx} - 6y = 3\sin 3x - 2\cos 3x$ gives:

$$-9\lambda \sin 3x - 9\mu \cos 3x - 3\lambda \cos 3x + 3\mu \sin 3x - 6\lambda \sin 3x - 6\mu \cos 3x = 3\sin 3x - 2\cos 3x$$

$$\Rightarrow (3\mu - 15\lambda)\sin 3x - (15\mu + 3\lambda)\cos 3x = 3\sin 3x - 2\cos 3x$$

Equating the coefficients of
$$\sin 3x$$
: $3\mu - 15\lambda = 3$ (1)

Equating the coefficients of
$$\sin 3x$$
: $15\mu + 3\lambda = 2$ (2)

Adding 5 × equation (2) to equation (1) gives: $78\mu = 13 \Rightarrow \mu = \frac{1}{6}$

Substituting in equation (1) gives:
$$\frac{1}{2} - 15\lambda = 3 \Rightarrow 15\lambda = -\frac{5}{2} = -\frac{1}{6}$$

- **24** So a particular integral is $\frac{1}{6}(\cos 3x \sin 3x)$
 - The general solution is $y = Ae^{3x} + Be^{-2x} + \frac{1}{6}(\cos 3x \sin 3x)$
 - When x = 0, y = 1 so $A + B + \frac{1}{6} = 1 \Rightarrow A + B = \frac{5}{6}$
 - However as y remains finite for large values of x, $A = 0 \Rightarrow B = \frac{5}{6}$
 - Substituting values for A and B into the general solution gives the particular solution

$$y = \frac{5}{6}e^{-2x} + \frac{1}{6}(\cos 3x - \sin 3x)$$

- **25 a** Solving the corresponding homogeneous equation $\frac{d^2x}{dt^2} + 8\frac{dx}{dt} + 16x = 0$
 - The auxiliary equation is

$$m^2 + 8m + 16 = 0$$

$$(m+4)(m+4) = 0$$

$$m = -4$$

- So the complementary function is $y = (A + Bt)e^{-4t}$
- The particular integral is of the form $x = \lambda \sin 4t + \mu \cos 4t$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 4\lambda\cos 4t - 4\mu\sin 4t$$

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -16\lambda \sin 4t - 16\mu \cos 4t$$

- Substituting into $\frac{d^2x}{dt^2} + 8\frac{dx}{dt} + 16x = \cos 4t$ gives:
- $-16\lambda \sin 4t 16\mu \cos 4t + 32\lambda \cos 4t 32\mu \sin 4t + 16\lambda \sin 4t + 16\mu \cos 4t = \cos 4t$

$$\Rightarrow -32\mu\sin 4t + 32\lambda\cos 4t = \cos 4t$$

$$\Rightarrow \lambda = \frac{1}{32}$$
 and $\mu = 0$

- So a particular integral is $\frac{1}{32}\sin 4t$
- The general solution is $x = (A + Bt)e^{-4t} + \frac{1}{32}\sin 4t$
- **b** When $t = 0, x = \frac{1}{2}$ so $A = \frac{1}{2}$

$$\frac{dx}{dt} = -4(A + Bt)e^{-4t} + Be^{-4t} + \frac{1}{8}\cos 4t$$

When
$$t = 0$$
, $\frac{dx}{dt} = 0$ so $-4A + B + \frac{1}{8} = 0$

$$\Rightarrow B = 4A - \frac{1}{8} = 2 - \frac{1}{8} = \frac{15}{8}$$

25 b Substituting values for A and B into the general solution from part a gives the particular solution

$$x = \frac{1}{2}e^{-4t} + \frac{15}{8}te^{-4t} + \frac{1}{32}\sin 4t$$

c As $t \to \infty$, $e^{-4t} \to 0$ and $te^{-4t} \to 0$, as e^{-4t} decreases faster than the linear factor.

So for large values of t, the function behaves like $x = \frac{1}{32} \sin 4t$.

It will oscillate like a sine wave with amplitude $\frac{1}{32}$ and period $\frac{\pi}{2}$.

Challenge

1 a Given that $z = y^2$, then $y = z^{\frac{1}{2}}$ and $\frac{dy}{dx} = \frac{1}{2}z^{-\frac{1}{2}}\frac{dz}{dx}$

The equation $2(1+x^2)\frac{dy}{dx} + 2xy = \frac{1}{y}$ becomes

$$2(1+x^2)\frac{1}{2}z^{-\frac{1}{2}}\frac{dz}{dx} + 2xz^{\frac{1}{2}} = z^{-\frac{1}{2}}$$

Multiply the equation by $\frac{z^{\frac{1}{2}}}{1+r^2}$ gives

$$\frac{dz}{dx} + \frac{2x}{1+x^2}z = \frac{1}{1+x^2}$$

The integrating factor is $e^{\int \frac{2x}{1+x^2} dx} = e^{\ln(1+x^2)} = 1+x^2$

$$(1+x^2)\frac{\mathrm{d}z}{\mathrm{d}x} + 2xz = 1$$

$$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \Big((1+x^2)z \Big) = 1$$

$$\Rightarrow (1+x^2)z = \int 1 \, \mathrm{d}x = x + c$$

$$\Rightarrow z = \frac{x+c}{1+x^2}$$

As
$$y = z^{\frac{1}{2}}$$
, $y = \sqrt{\frac{x+c}{1+x^2}}$

b When x = 0, y = 2 so $\sqrt{c} = 2 \Rightarrow c = 4$ So the particular solution is $y = \sqrt{\frac{x+4}{1+x^2}}$

Challenge

2 a Let
$$x = e^{u}$$
, then $\frac{dx}{du} = e^{u}$

$$\frac{dy}{du} = \frac{dy}{dx} \times \frac{dx}{du} = e^{u} \frac{dy}{dx} = x \frac{dy}{dx}$$

$$\frac{d^{2}y}{du^{2}} = \frac{dx}{du} \times \frac{dy}{dx} + x \frac{d^{2}y}{dx^{2}} \times \frac{dx}{du}$$

$$= x \frac{dy}{dx} + x^{2} \frac{d^{2}y}{dx^{2}}$$

Find
$$\frac{dy}{du}$$
 in terms of x and $\frac{dy}{dx}$, and show that $\frac{d^2y}{du^2} = x\frac{dy}{dx} + x^2\frac{d^2y}{dx^2}$ then substitute into the differential equation.

So
$$x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y = \ln x$$
 transforms to $\frac{d^2 y}{du^2} + 3 \frac{dy}{du} + 2y = \ln x = u$

The auxiliary equation is

$$m^2 + 3m + 2 = 0$$

$$(m+2)(m+1) = 0$$

$$m = -1 \text{ or } -2$$

So the complementary function is $y = Ae^{-u} + Be^{-2u}$

Let the particular integral be of the form $y = \lambda u + \mu$, so $\frac{dy}{du} = \lambda$ and $\frac{d^2y}{du^2} = 0$

Substituting into $\frac{d^2y}{du^2} + 3\frac{dy}{du} + 2y = u$ gives:

$$3\lambda + 2\lambda u + 2\mu = u$$

Equating the coefficients of u: $2\lambda = 1 \Rightarrow \lambda = \frac{1}{2}$

Equating constants: $3\lambda + 2\mu = 0 \Rightarrow 2\mu = -\frac{3}{2} \Rightarrow \mu = -\frac{3}{4}$

So a particular integral is $\frac{1}{2}u - \frac{3}{4}$

The general solution is $y = Ae^{-u} + Be^{-2u} + \frac{1}{2}u - \frac{3}{4}$

But
$$x = e^u \Rightarrow u = \ln x$$
 and $e^{-u} = x^{-1} = \frac{1}{x}$, $e^{-2u} = x^{-2} = \frac{1}{x^2}$

So the general solution of the original equation is $y = \frac{A}{x} + \frac{B}{x^2} + \frac{1}{2} \ln x - \frac{3}{4}$

Challenge

2 b When
$$x = 1$$
, $y = 1$ so $A + B - \frac{3}{4} = 1 \Rightarrow A + B = \frac{7}{4}$ (1)

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{A}{x^2} - \frac{2B}{x^3} + \frac{1}{2x}$$

When
$$x = 1$$
, $\frac{dy}{dx} = 1$ so $-A - 2B + \frac{1}{2} = 1 \Rightarrow A + 2B = -\frac{1}{2}$ (2)

Subtracting equation (1) from equation (2) gives $B = -\frac{9}{4}$ and so from equation (1) $A = \frac{9}{4} + \frac{7}{4} = 4$

Substituting values for A and B into the general solution from part a gives the particular solution

$$y = \frac{4}{x} - \frac{9}{4x^2} + \frac{1}{2} \ln x - \frac{3}{4}$$