### **Route inspection 4A**

There are 4 nodes with odd valency so the graph is neither Eulerian nor Semi-Eulerian.

b

vertex G H I J K valency 3 4 3 2 4

There are precisely 2 nodes of odd degree (G and I) so the graph is *semi-Eulerian*. A possible route starting at G and finishing at I is: G - H - K - I - J - K - G - H - I

c

vertexLMNPQRvalency242424

All vertices have even valency, so the graph is *Eulerian*. A possible route starting and finishing at L is: L - M - N - P - M - R - P - Q - R - L

#### 2 a i

| vertex  | А | В | С | D | Е | F | G | Н |
|---------|---|---|---|---|---|---|---|---|
| valency | 4 | 2 | 4 | 2 | 2 | 4 | 2 | 2 |

ii

| vertex  | А | В | С | D | Е | F | G |
|---------|---|---|---|---|---|---|---|
| valency | 4 | 4 | 2 | 4 | 2 | 4 | 4 |

**b** i A possible route is: A - B - C - A - F - C - E - G - H - F - D - Aii A possible route is: A - C - F - A - B - E - G - B - D - G - F - D - A

#### 3 a i

| vertex  | R | S | Т | U | V | W |
|---------|---|---|---|---|---|---|
| valency | 2 | 2 | 3 | 3 | 2 | 2 |

Precisely 2 vertices of odd valency (T and U) so semi-Eulerian.

ii

| vertex  | Н | Ι | J | Κ | L | Μ | Ν |   |
|---------|---|---|---|---|---|---|---|---|
| valency | 2 | 4 | 3 | 2 | 3 | 4 | 4 | _ |

Precisely 2 nodes of odd degree (J and L) so semi-Eulerian.

- **b** i A possible route starting of T and finishing at U is: T - R - S - U - W - V - T - U
  - ii A possible route starts at J and finishes at L: J-K-L-M-J-I-M-N-I-H-N-L

<sup>1</sup> a

### **Decision Mathematics 1**

- **4 a** The number of odd nodes of any graph must be even so this is not possible as there are 3 odd nodes.
  - **b** i 2x+1+2x+4x-1+4x+6x = 2E = 18  $\Rightarrow 18x = 18$   $\Rightarrow x = 1$ 
    - ii Semi-Eulerian since there are two odd nodes.
  - c Numerous possible answers e.g.:



- 5 a Not connected. There are no connections from A, B or C to D or E.
  - **b** Neither. To be Eulerian or semi-Eulerian the graph must be connected.



- 6 Adding up the numbers in each row, the orders of A, B, C, D, E are 2, 2, 2, 4, 4. Since they are all even the graph must be Eulerian.
- 7 a *n* must be odd so that each vertex will have degree n 1 which is even.



8 The example given in the question 1a is a counterexample. *ABEFCDA* is a Hamiltonian cycle, but the graph is not Eulerian.





There are more than two odd nodes, so the graph is *not* traversable.

## **Decision Mathematics 1**



We will start at A and finish at C so these still need to have odd valency. We can only have two odd valencies so B and D must have even valencies (see table).

We need to change the valency of B and of D. So we build a bridge from B to D.

| h 7 bridges<br>ncy wanted | odd<br>odd | odd<br>even | odd<br>odd | odd<br>even |
|---------------------------|------------|-------------|------------|-------------|
| ncy wanted                | odd        | even        | odd        | ovon        |
|                           | Į.         |             |            | cven        |
|                           |            |             |            |             |
|                           |            |             | 1          |             |
|                           |            |             |            |             |

We will start at B and finish at C so these vertices need to be the two vertices with odd valency. We need A and D to have even valency (see table). We need to change the valency of node A and of node B. So we build a bridge from A to B.

| vertex                 | А    | В    | С   | D    |
|------------------------|------|------|-----|------|
| valency with 8 bridges | odd  | even | odd | even |
| valency wanted         | even | odd  | odd | even |

# **Decision Mathematics 1**

> All vertices now need to have even valency. This means we need to change the valencies of nodes B and C. So the 10th bridge needs to be built from B to C.

| vertex                 | А    | В    | С    | D    |
|------------------------|------|------|------|------|
| valency with 9 bridges | even | odd  | odd  | even |
| valency wanted         | even | even | even | even |