Decision Mathematics 1

- **4** a C
 - b A
 - сB
 - d D
 - e C

 - f A
 - **g** B
 - h D
 - i C
 - j D
- 5 Let x be the mass of indoor feed and y be the mass of outdoor feed, in kilograms. Recall that we want to maximise P = 7x + 6y, subject to
 - $x + 2y \leq 500,$ $2x + y \leq 500,$ $x + y \leq 300,$ $y \leq 3x,$ $y \geq 0 \quad x \geq 50,$

Draw the diagram including all constraints and mark the feasible region as *R*. Objective line passes through (0, 350) and (300, 0). Maximum point is (200, 100). $P_{\text{max}} = 2000$

Using the ruler method, we identify that optimal point is (200,100). At this point P = 2000Hence, we conclude that in order to maximise its profit, the company should produce 200kg of indoor feed and 100kg of outdoor feed. The profit will be £2000. 6 Decision variables: x = hours of work for factory R, y = hours of work for factory SRecall that we wish to minimise C = 300x + 400y subject to:

 $5x + 4y \ge 100$ $2x + 3y \ge 60$ $2x \ge y$ $2y \ge x$ $x, y \ge 0$

Draw the diagram including all constraints and mark the feasible region as R.

We can use the ruler method; in the picture we have drawn an objective line passing through points (0,15) and (20,0)

This way, we identify the optimal point as the intersection of lines 5x + 4y = 100 and 2x + 3y = 60By solving simultaneous equations, we find the optimal point $\left(8\frac{4}{7}, 14\frac{2}{7}\right)$ and optimal value

$$C = 8285 \frac{5}{7}$$

We conclude that in order to minimise operating cost, factory R should work for $8\frac{4}{7}$ h and factory S

for $14\frac{2}{7}h$

Decision Mathematics 1

b	Vertices	C = 3x + 2y
	(0, 160)	320
	(40, 80)	280
	(90, 30)	330
	(180, 0)	540

so minimum is (40, 80) value of C = 280

- c (90, 30) $C_1 = 270$
- **d** C_2 is parallel to x + y = 120 so all points from A to B are optimal points.

Decision Mathematics 1

8 a

b i
$$\left(13\frac{1}{2}, 6\frac{2}{3}\right)$$
 $P = 33\frac{1}{3}$
ii $\left(34\frac{2}{37}, 17\frac{1}{37}\right)$ $Q = 221\frac{13}{37}$

9 a

9 b i We can identify 4 vertices of the feasible region as intersections of respective lines

$$y = 10x, 2y - x = 100 \Rightarrow A = \left(5\frac{5}{19}, 52\frac{12}{19}\right)$$
$$y = 10x, 2x + y = 400 \Rightarrow B = \left(33\frac{1}{3}, 333\frac{1}{3}\right)$$
$$x = 120, 2x + y = 400 \Rightarrow C = (120, 160)$$
$$x = 120, 2y - x = 100 \Rightarrow D = (120, 110)$$

Now we apply the vertex testing method.

Vertex	Coordinates	Value of $z = 5x + y$
A	$x = 5\frac{5}{19}, y = 52\frac{12}{19}$	$78\frac{18}{19}$
В	$x = 33\frac{1}{3}, y = 333\frac{1}{3}$	500
С	x = 120, y = 160	760
D	x = 120, y = 110	710

Maximal value of z in the feasible region is 760

- ii Minimal value of z in the feasible region is $78\frac{18}{19}$
- c We apply the vertex testing method to the points identified in part b.

Vertex	Coordinates	Value of $x+2y$
A	$x = 5\frac{5}{19}, y = 52\frac{12}{19}$	$110\frac{10}{19}$
В	$x = 33\frac{1}{3}, y = 333\frac{1}{3}$	700
С	x = 120, y = 160	440
D	x = 120, y = 110	340

Maximal value of x + 2y is 700

Challenge

a Sketch the feasible region by noting the boundary line corresponding to $x^2 + y \le 10$ is a parabola.

b Objective function is 3x + y, so gradient of an objective line is -3When we apply the ruler method we observe that at the optimal point parabola is tangent to the objective line.

For $x^2 + y = 10$ we have $\frac{dy}{dx} = -2x$ $-2x = -3 \Rightarrow x = 1.5$, $y = 10 - (1.5)^2 = 7.75$ Maximal value of $P = 3 \times (1.5) + 7.75 = 12.25$