Linear Programming Mixed exercise

1 a Flour: $200x + 200y \le 2800$

so $x + y \leq 14$

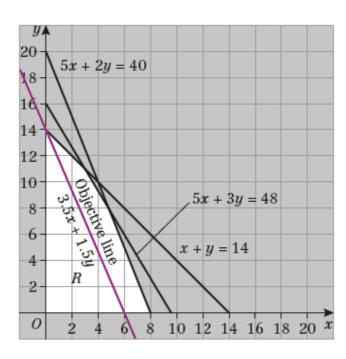
Fruit: $125x + 50y \le 1000$

so $5x + 2y \le 40$

b Cooking time $50x + 30y \leqslant 480$

so
$$5x + 3y \le 48$$

c



d
$$P = 3.5x + 1.5y$$

e Integer solution required (6, 5)

f
$$P_{\text{max}} = £28.50$$

2 a Storage: $0.08x + 0.08y \le 6.4$

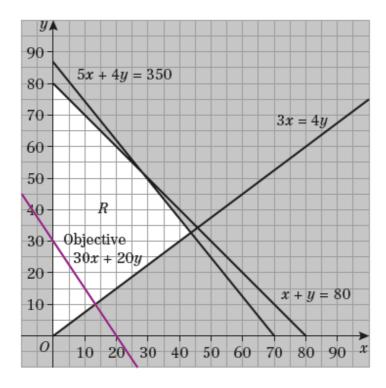
so
$$x + y \leq 80$$

b Cost: $6x + 4.8y \le 420$ so $5x + 4y \le 350$

c Display $30x \leqslant 2 \times 20y$

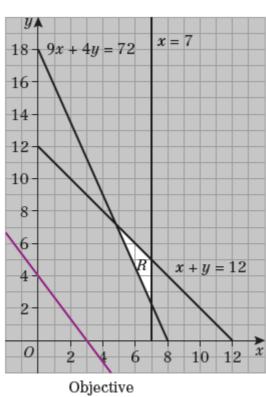
 $3x \leqslant 4y$

2 d



- e Integer solution required (43, 33) He should buy 43 CD storage units and 33 cassette storage units.
- 3 a i Total number of people $54x + 24y \ge 408 + 24 = 432$ so $9x + 4y \ge 72$
 - ii Number of adults is 24, at least 2 per coach, so $x + y \le 12$
 - iii Number of large coaches, $x \le 7$

3 b



- 3 c Minimise C = 336x + 252y= 84(4x + 3y)
 - **d** Objective line passes through (0, 4)(3, 0)
 - e Integer coordinates needed (7, 3) so hire 7 large coaches and 3 small coaches cost = £3108

4 a
$$4x + 5y \le 47$$

 $y \ge 2x - 8$
 $4y - x - 8 \le 0$
 $x, y \ge 0$

b Solving simultaneous equations

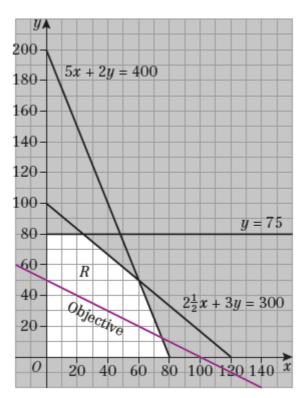
$$y = 2x - 8$$

$$4x + 5y = 47$$

$$\left(6\frac{3}{14},4\frac{3}{7}\right)$$

- \mathbf{c} i For example where x and y
 - types of car to be hired
 - number of people, etc
 - ii (6, 4)

5



a $2\frac{1}{2}x + 3y \leqslant 300 \ (5x + 6y \leqslant 600)$

$$5x + 2y \leqslant 400$$

$$2y \leqslant 150 \ (y \leqslant 75)$$

- **5 b** Maximise P = 2x + 4y
 - c (30, 75) P = 360
 - **d** The optimal point is at the intersection of y = 75 and $2\frac{1}{2}x + 3y = 300$ So the constraint $5x + 2y \le 400$ is not at its limit. At (30, 75) 5x + 2y = 300 so 100 minutes are unused.

Challenge

a Either solve matrix equation

$$\begin{pmatrix} 1 & 1 & 2 \\ 1 & 0 & -1 \\ 0 & 1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 160 \\ 25 \\ 100 \end{pmatrix}$$

or simply manipulate the equations

$$x + y + 2z = 160$$
 (1)

$$x - z = 25 \tag{2}$$

$$y + 2z = 100$$
 (3)

e.g.

(1) - (3)
$$\Rightarrow x + y + 2z - y - 2z = 160 - 100 \Rightarrow x = 60$$

from **(2)**
$$\Rightarrow z = x - 25 = 35$$

from (3)
$$\Rightarrow y = 100 - 2z = 30$$

Thus the solution is (60,30,35)

b Constraints define 5 different planes in space. Each vertex of the feasible region lies at an intersections of 3 of them. We do not know a priori which intersections we should consider. However, we can hypothesise that the tetrahedron lies strictly in the region $x, y \ge 0$

Compute the vertices by considering simultaneous equations as in part a.

$$x + y + 2z = 160, x - z = 25, y + 2z = 100 \Rightarrow x = 60, y = 30, z = 35$$

$$x-z=25, y+2z=100, z=15 \Rightarrow x=40, y=70, z=15$$

$$x + y + 2z = 160, y + 2z = 100, z = 15 \Rightarrow x = 60, y = 70, z = 15$$

$$x + y + 2z = 160, x - z = 25, z = 15 \Rightarrow x = 40, y = 90, z = 15$$

All of them lie strictly in the region $x, y \ge 0$ so our hypothesis is true.

Challenge

c We use the vertices testing method

Point	Value of P
x = 60, y = 30, z = 35	175
x = 40, y = 70, z = 15	275
x = 60, y = 70, z = 15	315
x = 40, y = 90, z = 15	335

Optimal value of *P* is 335, attained at point (40,90,15)