The simplex algorithm 7A

1 Let x_1 , x_2 and x_3 be the number of round, square and rectangular boxes respectively. Maximise $P = 12x_1 + 10x_2 + 11x_3$ Subject to: $4x_1 + 2x_2 + 3x_3 + r = 360$ $2x_1 + 3x_2 + 3x_3 + s = 360$ $x_1, x_2, x_3, r, s \ge 0$

2 Let x_A, x_B, x_C and x_D be the number of type A, B, C and D backpacks made. Maximise $P = 8x_A + 7x_B + 6x_C + 9x_D$ Subject to: $2.5x_A + 3x_B + 2x_C + 4x_D + r = 1400$ $10x_A + 12x_B + 8x_C + 15x_D + s = 9000$ $5x_A + 7x_B + 4x_C + 9x_D + t = 4800$ $x_A + x_B + x_C + x_D + u = 500$ $x_A, x_B, x_C, x_D, r, s, t, u \ge 0$

3 Let x_A, x_C and x_S be the number of adults, children and senior members.

Maximise
$$P = 40x_A + 10x_C + 20x_S$$

Subject to:
 $x_A + x_C + x_S + r = 100$
 $-x_A + x_C - x_S + s = 0$
 $-2x_A + x_C + x_S + t = 0$
 $x_A, x_C, x_S, r, s, t \ge 0$
 $x_A \ge \frac{1}{3}(x_A + x_C + x_S)$
 $3x_A \ge x_A + x_C + x_S$
 $2x_A \ge x_C + x_S$
 $x_C + x_S - 2x_A \le 0$
 $x_C \le \frac{1}{2}(x_A + x_C + x_S)$
 $x_C \le \frac{1}{2}(x_A + x_C + x_S)$
 $x_C \le \frac{1}{2}(x_A + x_C + x_S)$
 $x_C = x_A - x_S \le 0$

4 Let x_r, x_f and x_m be the number of batches of rock cakes, fairy cakes and muffins made. Maximise $T = 10x_r + 18x_f + 12x_m$ Subject to: $220x_r + 100x_f + 250x_m + r = 3000$ $100x_r + 100x_f + 50x_m + s = 2000$ $50x_r + 100x_f + 75x_m + t = 1500$ $x_r, x_f, x_m, r, s, t, \ge 0$ 5 x_s - number of small boxes, x_m - number of medium boxes, x_l - number of large boxes

Minimise cost, i.e. minimise $C = 0.3x_s + 0.5x_m + 0.8x_l$ (in pounds) subject to the following constraints:

at least 28 m³ \Rightarrow 0.1 x_s + 0.3 x_m + 0.7 $x_l \ge 28 \Rightarrow x_s$ + 3 x_m + 7 $x_l \ge 280$ at least 600 kg \Rightarrow 3 x_s + 8 x_m + 18 $x_l \ge 600$ at least half should be small $\Rightarrow x_s \ge 0.5(x_s + x_m + x_l) \Rightarrow -x_s + x_m + x_l \le 0$ at least twice as many medium as large $x_m \ge 2x_l \Rightarrow -x_m + 2x_l \le 0$ non-negativity $\Rightarrow x_s, x_m, x_l \ge 0$