Review Exercise 2

1 a Chemical A $5x + y \ge 10$ Chemical B $2x + 2y \ge 12$ $[x + y \ge 6]$ Chemical C $\frac{1}{2}x + 2y \ge 6$ $[x + 4y \ge 12]$ $x, y \ge 0$

c
$$T = 2x + 3y$$

d (x, y) = (4, 2)T = 14

2

Decision Mathematics 1

- **2 a** Maximise P = 300x + 500y
 - **b** Finishing $3.5x + 4y \le 56 \Rightarrow 7x + 8y \le 112$ (o.e.) Packing $2x + 4y \le 40 \Rightarrow x + 2y \le 20$ (o.e.)

- **d** For example, *point testing*
 - Test all corner points in feasible region.
 - Find profit at each and select point yielding maximum. *profit line*
 - Draw profit lines.
 - Select point on profit line furthest from the origin.
- e Using a correct, complete method. Making 6 Oxford and 7 York gives a profit = £5300 (6, 7) \rightarrow 5300 (14.4, 1.4) $\xrightarrow{\text{integer}}$ (14, 1) \rightarrow 4700 (16, 0) \rightarrow 4800 (0, 10) \rightarrow 5000
- **f** The line 3.5x + 4y = 49 passes through (6, 7) so reduce *finishing* by 7 hours.

3 a Objective: maximise P = 30x + 40y (or P = 0.3x + 0.4y) subject to:

$$x + y \ge 200$$

$$x + y \le 500$$

$$x \ge \frac{20}{100}(x + y) \Longrightarrow 4x \ge y$$

$$x \le \frac{40}{100}(x + y) \Longrightarrow 3x \le 2y$$

$$x, y \ge 0$$

c Visible use of objective line method – objective line drawn or vertex testing – all 4 vertices tested

Vertex testing

 $(40, 160) \rightarrow 7600$ $(80, 120) \rightarrow 7200$ $(100, 400) \rightarrow 19000$ $(200, 300) \rightarrow 18000$

Intersection of y = 4x and x + y = 500(100, 400) profit £190 (or 19 000 p)

3

SolutionBank

- **b** Visible use of objective line method objective line drawn or vertex testing. $\left[\left(3\frac{5}{6}, 3\frac{1}{2} \right) \rightarrow 25\frac{1}{6} \left(8\frac{1}{2}, 3\frac{1}{2} \right) \rightarrow 34\frac{1}{2}(4, 8) \rightarrow 48(3, 6) \rightarrow 36 \right]$ Optimal point $\left(3\frac{5}{6}, 3\frac{1}{2} \right)$ with value $25\frac{1}{6}$
- c Visible use of objective line method objective line drawn, or vertex testing all 4 vertices tested.

$$\begin{pmatrix} 3\frac{5}{6}, 3\frac{1}{2} \end{pmatrix} \text{ not an integer try } (4, 4) \rightarrow 20 \quad (4, 8) \rightarrow 28$$
$$\begin{pmatrix} 8\frac{1}{2}, 3\frac{1}{2} \end{pmatrix} \text{ not an integer try } (8, 4) \rightarrow 32 \quad (3, 6) \rightarrow 21 \end{cases}$$

Optimal point (8, 4) with value £32, so Becky should use 4 kg of bird feeder and 3.5 kg of bird table food.

- 5 a Objective: maximise P = 0.4x + 0.2y (P = 40x + 20y) subject to:
 - $x \leq 6.5$ $y \leq 8$ $x + y \leq 12$ $y \leq 4x$ $x, y \geq 0$
 - b Visible use of objective line method objective line drawn (e.g. from (2, 0) to (0, 4)) or all 5 points tested. vertex testing
 [(0, 0) → 0; (2, 8) → 2.4; (4, 8) → 3.2; (6.5, 5.5) → 3.7; (6.5, 0) → 2.6]
 Optimal point is (6.5, 5.5) ⇒ 6500 type *X* and 5500 type *Y*
 - c $P = 0.4(6500) + 0.2(5500) = \text{\pounds}3700$

6 a Maximise P = 50x + 80y + 60z

Subject to $x + y + 2z \leq 30$ $x + 2y + z \leq 40$ $3x + 2y + z \leq 50$ where x, y, $z \geq 0$

b Initialising tableau

b.v.	x	у	z	r	S	t	value
r	1	1	2	1	0	0	30
S	1	2	1	0	1	0	40
t	3	2	1	0	0	1	50
Р	-50	-80	-60	0	0	0	0

Choose correct pivot, divide R2 by 2

State correct row operation R1 – R2, R3 – 2R2, R4 + 80R2, R2 \div 2

c The solution found after one iteration has a slack of 10 units of black per day

d i

b.v.	x	y	Z.	r	S	t	value	
r	$\frac{1}{2}$	0	$\left(\frac{3}{2}\right)$	1	$\frac{-1}{2}$	0	10	
у	$\frac{1}{2}$	1	$\frac{1}{2}$	0	$\frac{1}{2}$	0	20	(giver
t	2	0	0	0	-1	1	10	
Р	-10	0	-20	0	40	0	1600	

b.v.	x	y	z	r	S	t	value	
z	$\frac{1}{3}$	0	1	$\frac{2}{3}$	$\frac{-1}{3}$	0	$6\frac{2}{3}$	$R1 \div \frac{3}{2}$
у	$\frac{1}{3}$	1	0	$\frac{-1}{3}$	$\frac{2}{3}$	0	$16\frac{2}{3}$	$R2 - \frac{1}{2}R1$
t	2	0	0	0	-1	1	10	R3 – no change
Р	$-3\frac{1}{3}$	0	0	$13\frac{1}{3}$	$33\frac{1}{3}$	0	$1733\frac{1}{3}$	R4 + 20R1

ii Not optimal, as there is a negative value in profit row

iii
$$x = 0$$
 $y = 16\frac{2}{3}$ $z = 6\frac{2}{3}$
 $P = \pounds 1733.33$ $r = 0, s = 0, t = 10$

7 a Objective: Maximise P = 4x + 5y + 3zSubject to $3x + 2y + 4z \le 35$ $x + 3y + 2z \le 20$ $2x + 4y + 3z \le 24$

l	-		
l		,	

b.v.	x	у	z	r	S	t	value	
r	2	0	$\frac{5}{4}$	1	0	$-\frac{1}{2}$	23	R1 – 2R3
S	$-\frac{1}{2}$	0	$-\frac{1}{4}$	0	1	$-\frac{3}{4}$	2	R2 – 3R3
у	$\frac{1}{2}$	1	$\frac{3}{4}$	0	0	$\frac{1}{4}$	6	R3 ÷ 4
Р	$-\frac{3}{2}$	0	$\frac{3}{4}$	0	0	$\frac{5}{4}$	30	R4 + 5R3

b.v.	x	y	z	r	S	t	value	
x	1	0	$\frac{5}{4}$	$\frac{1}{2}$	0	$-\frac{1}{4}$	$\frac{23}{2}$	R1 ÷ 2
S	0	0	$\frac{3}{8}$	$\frac{1}{4}$	1	$-\frac{7}{8}$	$\frac{31}{4}$	$R2 + \frac{1}{2}R1$
у	0	1	$\frac{1}{8}$	$-\frac{1}{4}$	0	$\frac{3}{8}$	$\frac{1}{4}$	$R3 - \frac{1}{2}R1$
Р	0	0	$\frac{21}{8}$	$\frac{3}{4}$	0	$\frac{7}{8}$	$\frac{189}{4}$	$R4 + \frac{3}{2} R1$

$$P = 47\frac{1}{4}$$
 $x = 11\frac{1}{2}$, $y = \frac{1}{4}$, $z = 0$

c There is some slack $\left(7\frac{3}{4}\right)$ on *s*, so *do not* increase blending: therefore increase Processing and Packing which are both at their limit at present.

8 a $x + 2y + 4z \leq 24$

- **b** i x + 2y + 4z + s = 24
 - ii $s(\ge 0)$ is the slack time on the machine in hours
- **c** 1 euro

d

b.v.	x	У	z	r	S	value	
r	$\frac{3}{2}$	2	0	1	$-\frac{3}{2}$	14	R1 – 6R2
z	$\frac{1}{4}$	$\frac{1}{2}$	1	0	$\frac{1}{4}$	6	R2 ÷ 4
Р	0	-1	0	0	1	24	R3 + 4R2

b.v.	x	У	z	t	S	value	
у	$\frac{3}{4}$	1	0	$\frac{1}{2}$	$\frac{-3}{4}$	7	R1 ÷ 2
z	$\frac{-1}{8}$	0	1	$\frac{-1}{4}$	$\frac{5}{8}$	$\frac{5}{2}$	$R2 - \frac{1}{2}R1$
Р	$\frac{3}{4}$	0	0	$\frac{1}{2}$	$\frac{1}{4}$	31	R3 + R1

Profit = 31 euros y = 7 z = 2.5 x = r = s = 0

e Cannot make $\frac{1}{2}$ a lamp

f e.g. (0, 10, 0) or (0, 6, 3) or (1, 7, 2) checks in **both** inequalities

9 a

	Board (m)	Time (<i>R</i>)
Small (x)	$2\frac{1}{2}$	10
Medium (y)	10	20
Large (z)	15	50
Available	300	1000

Board
$$2\frac{1}{2}x + 10y + 15z \leq 300$$

 $x + 4y + 6z \leq 120$
Time $10x + 20y + 50z \leq 1000$
 $x + 2y + 5z \leq 100$

b P = 10x + 20y + 28z

c

b.v.	x	у	z	r	S	values
r	1	4	6	1	0	120
S	1	2	5	0	1	100
Р	-10	-20	-28	0	0	0

d $\theta_1 = 30, \theta_2 = 50$; pivot 4

b.v.	x	у	z	r	S	value	Row operation
у	$\frac{1}{4}$	1	$1\frac{1}{2}$	$\frac{1}{4}$	0	30	R1 ÷ 4
S	$\frac{1}{2}$	0	2	$\frac{-1}{2}$	1	40	R2 – 2R1
Р	-5	0	2	5	0	600	R3 + 20R1

$$\theta_1 = 120, \ \theta_2 = 80; \text{pivot} \frac{1}{2}$$

b.v.	x	у	z	r	S	value	Row operation
у	0	1	$\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	10	$R1 - \frac{1}{2}R2$
x	1	0	4	-1	2	80	2R2
P	0	0	22	0	10	1000	R3 + 5R2

e This tableau is optimal as there are no negative numbers in the profit line.

f Small 80, medium 10; large 0

Profit £1000

- 10 a The constraints include a mixture of \leq and \geq variables.
 - **b** $x + y + 2z + s_1 = 10$ $x + 3y + z + s_2 = 15$ $2x + y + z - s_3 + a_1 = 12$
 - **c** The purpose is to maximise $I = -a_1$ which $= 2x + y + z - s_3 - 12$ So $I - 2x - y - z + s_3 = -12$ This gives the final row of the tableau.
 - **d** The smallest value in the bottom row is -2 and the smallest θ value is $a_1(6)$ so this is the pivot and we obtain:

b.v.	x	у	z	<i>s</i> ₁	<i>s</i> ₂	<i>S</i> 3	<i>a</i> ₁	value
<i>s</i> ₁	0	0.5	1.5	1	0	0.5	-0.5	4
<i>s</i> ₂	0	2.5	0.5	0	1	0.5	-0.5	9
x	1	0.5	0.5	0	0	-0.5	0.5	6
Р	0	-1.5	-2.5	0	0	-0.5	0.5	6
Ι	0	0	0	0	0	0	1	0

- e There are no negative values in the bottom row, so the optimal value of I is 0 when $a_1 = 0$
- **f** There is a negative value in the bottom row.

g

b.v.	x	у	z	<i>s</i> ₁	<i>s</i> ₂	S 3	Value	Row operation
z	0	0	1	$\frac{5}{7}$	$-\frac{1}{7}$	$\frac{2}{7}$	$\frac{11}{7}$	$R_1 - \frac{1}{7}R_2$
у	0	1	0	$-\frac{1}{7}$	$\frac{3}{7}$	$\frac{1}{7}$	$\frac{23}{7}$	$\frac{3}{7}R_2$
x	1	0	0	$-\frac{2}{7}$	$-\frac{1}{7}$	$-\frac{5}{7}$	$\frac{25}{7}$	$R_3 - \frac{1}{7}R_2$
Р	0	0	0	$\frac{11}{7}$	$\frac{2}{7}$	$\frac{3}{7}$	$\frac{104}{7}$	$R_4 + \frac{2}{7}R_2$

The maximum value of P is $\frac{104}{7} = 14\frac{6}{7}$ which occurs when

$$x = \frac{25}{7}, y = \frac{23}{7}, z = \frac{11}{7}, s_1 = s_2 = s_3 = 0$$

- 11 a $x + 2y + 3z + s_1 = 18$ $3x + y + z - s_2 + a_1 = 6$ $2x + 5y + z - s_3 + a_2 = 20$
 - **b** New objective is maximise $I = -(a_1 + a_2)$ $-a_1 = 3x + y + z - s_2 - 6$ $-a_2 = 2x + 5y + z - s_3 - 20$

In terms of non-basic variables, the new objective is maximise $I = 5x + 6y + 2z - s_2 - s_3 - 26$

c

b.v.	x	у	z	<i>s</i> ₁	<i>S</i> ₂	<i>S</i> 3	<i>a</i> ₁	a_2	value
<i>s</i> ₁	1	2	3	1	0	0	0	0	18
<i>a</i> ₁	3	1	1	0	-1	0	1	0	6
a_2	2	5	1	0	0	-1	0	1	20
Р	-2	1	-1	0	0	0	0	0	0
Ι	-5	-6	-2	0	1	1	0	0	-26

d 1st iteration

Pivot is *y*-column a_2 row

b.v.	x	у	z	<i>s</i> ₁	<i>s</i> ₂	S 3	<i>a</i> ₁	<i>a</i> ₂	Value	Row operation
<i>s</i> ₁	$\frac{1}{5}$	0	$\frac{13}{5}$	1	0	$\frac{2}{5}$	0	$-\frac{2}{5}$	10	$R_1 - \frac{2}{5}R_3$
<i>a</i> ₁	$\frac{13}{5}$	0	$\frac{4}{5}$	0	-1	$\frac{1}{5}$	1	$-\frac{1}{5}$	2	$R_2 - \frac{1}{5}R_3$
у	$\frac{2}{5}$	1	$\frac{1}{5}$	0	0	$-\frac{1}{5}$	0	$\frac{1}{5}$	4	$\frac{1}{5}R_3$
Р	$-\frac{12}{5}$	0	$-\frac{6}{5}$	0	0	$\frac{1}{5}$	0	$-\frac{1}{5}$	-4	$R_4 - \frac{1}{5}R_3$
Ι	$-\frac{13}{5}$	0	$-\frac{4}{5}$	0	1	$-\frac{1}{5}$	0	$\frac{6}{5}$	-2	$R_5 + \frac{6}{5}R_3$

2nd iteration

Pivot is *x* column a_1 row

b.v.	x	у	z	<i>s</i> ₁	<i>s</i> ₂	S 3	<i>a</i> ₁	<i>a</i> ₂	Value	Row operation
<i>s</i> ₁	0	0	$\frac{33}{13}$	1	$\frac{1}{13}$	$\frac{5}{13}$	$-\frac{1}{13}$	$-\frac{5}{13}$	$\frac{128}{13}$	$R_1 - \frac{1}{13}R_2$
x	1	0	$\frac{4}{13}$	0	$-\frac{5}{13}$	$\frac{1}{13}$	$\frac{5}{13}$	$-\frac{1}{13}$	$\frac{10}{13}$	$\frac{5}{13}R_2$
у	0	1	$\frac{1}{13}$	0	$\frac{2}{13}$	$-\frac{3}{13}$	$-\frac{2}{13}$	$\frac{3}{13}$	$\frac{48}{13}$	$R_3 - \frac{2}{13}R_2$
Р	0	0	$-\frac{6}{13}$	0	$-\frac{12}{13}$	$\frac{5}{13}$	$\frac{12}{13}$	$-\frac{5}{13}$	$-\frac{28}{13}$	$R_4 + \frac{12}{13}R_2$
Ι	0	0	0	0	0	0	1	1	0	$R_{5} + R_{2}$

Basic feasible solution is $x = \frac{10}{13}$, $y = \frac{43}{13}$, z = 0, $s_1 = \frac{128}{13}$, $s_2 = s_3 = a_1 = a_2 = 0$

- **12 a** $3x + 2y + z + s_1 = 24$ $5x + 3y + 2z + s_2 = 60$ $x - s_3 + a_1 = 2$
 - **b** $P = x + 3y + 4z Ma_1$ = $x + 3y + 4z - M(2 - x + s_3)$ $P = x(1 + M) + 3y + 4z - 2M - Ms_3$ $P - (1 + M)x - 3y - 4z + Ms_3 = -2M$

c

b.v.	x	У	z	<i>s</i> ₁	<i>s</i> ₂	<i>S</i> 3	a_1	value
<i>s</i> ₁	3	2	1	1	0	0	0	24
<i>S</i> ₂	5	3	2	0	1	0	0	60
<i>a</i> ₁	1	0	0	0	0	-1	1	2
Р	-(1 + M)	-3	-4	0	0	M	0	-2M

- **d** The most negative value in the *P* row is in the *x*-column so, in the first iteration, *x* enters the basic variables.
- e 1st iteration

x column a_1 row is the pivot

b.v.	x	у	z	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	<i>a</i> ₁	Value	Row operation
<i>s</i> ₁	0	2	1	1	0	3	-3	18	$R_1 - 3R_3$
<i>s</i> ₂	0	3	2	0	1	5	-5	50	$R_2 - 5R_3$
x	1	0	0	0	0	-1	1	2	
Р	0	-3	-4	0	0	-1	(1 + <i>M</i>)	2	$R_4 + (1+M)R_3$

2nd iteration z column s_1 row is the pivot

b.v.	x	у	z	<i>s</i> ₁	<i>s</i> ₂	S 3	<i>a</i> ₁	Value	Row operation
z	0	2	1	1	0	3	-3	18	
<i>s</i> ₂	0	-2	0	-2	1	-1	-1	14	$R_2 - 2R_1$
x	1	0	0	0	0	-1	1	2	
Р	0	5	0	4	0	11	M - 11	74	$R_4 + 4R_1$

All entries in the *P* row are non-negative so the tableau represents the optimal solution. $x = 2, y = 0, z = 18, s_1 = 0, s_2 = 14, s_3 = 0, a_1 = 0$

- **13 a** $4x + 3y + 2z + s_1 = 36$ $x + 4z + s_2 = 52$ $x + y - s_3 + a_1 = 10$
 - **b** Maximise $P = -2x + 3y z Ma_1$ = $-2x + 3y - z - M(10 - x - y + s_3)$ = $x(M-2) + y(M+3) - z - 10M - Ms_3$ Rearranging gives $P - (M-2)x - (M+3)y + z + Ms_3 = -10M$

c

b.v.	x	у	z	<i>s</i> ₁	<i>s</i> ₂	<i>S</i> 3	<i>a</i> ₁	value
<i>s</i> ₁	4	3	2	1	0	0	0	36
<i>s</i> ₂	1	0	4	0	1	0	0	52
<i>a</i> ₁	1	1	0	0	0	-1	1	10
P	-(M-2)	-(M+3)	1	0	0	М	0	-10M

d 1st iteration y column a_1 row is the pivot

b.v.	x	у	z	<i>s</i> ₁	<i>s</i> ₂	S 3	<i>a</i> ₁	Value	Row operation
<i>s</i> ₁	1	0	2	1	0	3	-3	6	$R_1 - 3R_3$
<i>s</i> ₂	1	0	4	0	1	0	0	52	
У	1	1	0	0	0	-1	1	10	
Р	5	0	1	0	0	-3	<i>M</i> +3	30	$R_4 + (M+3)R_3$

2nd iteration s_3 column s_1 row is the pivot

b.v.	x	у	z	<i>s</i> ₁	<i>s</i> ₂	S 3	<i>a</i> ₁	Value	Row operation
S 3	$\frac{1}{3}$	0	$\frac{2}{3}$	$\frac{1}{3}$	0	1	-1	2	$\frac{1}{3}R_1$
<i>S</i> ₂	1	0	4	0	1	0	0	52	
у	$\frac{4}{3}$	1	$\frac{2}{3}$	$\frac{1}{3}$	0	0	0	12	$\frac{1}{3}R_1 + R_3$
Р	6	0	3	1	0	0	М	36	$R_{4} + R_{1}$

Maximum value of P = 36Minimum value of C = -36

This occurs when x = 0, y = 12, z = 0, $s_1 = 0$, $s_2 = 52$, $s_3 = 2$

15 a

b Here we have that *I* and *J* depend only on *E*, whereas *H* depends on *C*, *D*, *E* and *F*. Hence we need separate nodes with a dummy.

16 a

b *D* will only be critical if it lies on the longest path

Path A to G	Length
A-B-E-G	14
A - C - F - G	15
A - C - D - E - G	13 + x

So we need 13 + x to be the longest, or equal longest $13 + x \ge 15$

 $x \ge 2$

17 a

- **b** Total float on A = 20 0 5 = 15Total float on B = 10 - 0 - 10 = 0Total float on C = 22 - 0 - 11 = 11Total float on D = 20 - 10 - 8 = 2Total float on E = 27 - 10 - 10 = 7Total float on F = 19 - 10 - 9 = 0Total float on G = 27 - 18 - 7 = 2
- Total float on H = 27 19 4 = 4Total float on I = 22 - 19 - 3 = 0Total float on J = 35 - 18 - 3 = 14
- Total float on K = 27 22 5 = 0
- Total float on L = 35 27 8 = 0Total float on M = 35 - 22 - 4 = 9
- **c** Critical activities: *B*, *F*, *I*, *K* and *L* length of critical path is 35 days
- **d** New critical path is B F H Llength of new critical path is 36 days

18 a x = 0

y = 7 [latest out of (3 + 2) and (5 + 2)]

- z = 9 [Earliest out of (13 4) and (19 7) and (16 2)]
- **b** Length is 22 Critical activities: *B*, *D*, *E* and *L*
- **c i** Total float on *N* = 22 − 14 − 3 = 5 **ii** Total float on *H* = 16 − 5 − 3 = 8

19 a For example, it shows dependence but it is not an activity. *G* depends on *A* and *C* only but *H* and *I* depend on *A*, *C* and *D*.

d Total float on A = 11 - 0 - 9 = 2Total float on D = 11 - 3 - 7 = 1Total float on G = 18 - 11 - 5 = 2 Total float on H = 17 - 11 - 5 = 1Total float on K = 25 - 16 - 7 = 2

- **20 a** Critical activities are *B*, *F*, *J*, *K* and *N* length of critical path is 25 hours *I* is not critical.
 - **b** Total float on A = 5 0 3 = 2Total float on C = 9 - 0 - 6 = 3Total float on D = 11 - 3 - 3 = 5Total float on E = 9 - 3 - 4 = 2Total float on G = 9 - 4 - 3 = 2

Total float on H = 16 - 7 - 7 = 2Total float on I = 16 - 9 - 5 = 2Total float on L = 22 - 11 - 4 = 7Total float on M = 22 - 16 - 2 = 4Total float on P = 25 - 18 - 3 = 4

d Look at 6.5 in the chart in c. F, E and G

- **b** 16 days, 7 workers
- c Delay the start of H until time 13
- **d** Activity *H* would have to take place on its own so the project will be delayed by at least 3 days.

22 a

- **b** 18 days
- c ADFIKN

- e 4 workers
- **f** e.g. delay the start times of: *E* to time 4
 - G to time 7 H to time 12 J to time 10 L to time 13 M to time 16

- **c** Total float = 35 17 14 = 4
- **d** *Either* 226 ÷ 87 = 2.6 (1 d.p.) so at least 3 workers needed (here 226 is the total number of hours required for all the activities) *or* 69 hours into the project activities J, K, I and M *must* be happening so at least 4 workers will be needed.

New shortest time is 89 hours.

- **b** Critical activities: A, C, F and H; length of critical path = 21
- **c** Total float on B = 10 5 4 = 1 Total float on E = 21 12 7 = 2

Total float on D = 12 - 9 - 2 = 1

Total float on G = 21 - 9 - 8 = 4

e For example;

()			5	5				1	0		15		2	0			2	5		3	0
		1	4					С			Þ		F			Η						
						I	3				G				Ε							

Minimum time for 2 workers is 24 days.

d If the gradient of the objective line is similar to the gradient of a constraint that runs through the optimal vertex, then the optimal integer solution may not lie close to the optimal vertex.

Challenge

2 We need to maximise D = -2x + 3y - z subject to the constraints $4x + 3y + 2z \le 36$

 $x + 4z \leq 52$

 $x + y \ge 10$

We rewrite these using slack, surplus and artificial variables to obtain:

 $4x + 3y + 2z + s_1 = 36$

$$x + 4z + s_2 = 52$$

 $x + y - s_3 + a_1 = 10$

The new objective function is:

$$I = -a_1 = x + y - s_3 - 10$$

So $I - x - y + s_3 = -10$

So the initial tableau is:

b.v.	x	у	z	<i>s</i> ₁	<i>s</i> ₂	S 3	<i>a</i> ₁	Value
<i>s</i> ₁	4	3	2	1	0	0	0	36
<i>s</i> ₂	1	0	4	0	1	0	0	52
a_1	1	1	0	0	0	-1	1	10
D	2	-3	1	0	0	0	0	0
Ι	-1	-1	0	0	0	1	0	-10

Both the *x* and *y* columns have the same value in the *I* row. But s_1 in the *x*-column has the smallest θ value (9) so we use that as the pivot. We then obtain:

b.v.	x	у	z	<i>s</i> ₁	<i>s</i> ₂	S 3	<i>a</i> ₁	Value	Row operation
x	1	$\frac{3}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	0	0	0	9	$\frac{1}{4}R_1$
<i>s</i> ₂	0	$-\frac{3}{4}$	$\frac{7}{2}$	$-\frac{1}{4}$	1	0	0	43	$R_2 - \frac{1}{4}R_1$
<i>a</i> ₁	0	$-\frac{15}{4}$	$\frac{1}{2}$	$-\frac{1}{4}$	0	-1	1	1	$R_3 - \frac{1}{4}R_1$
D	0	$-\frac{9}{2}$	-1	$-\frac{1}{2}$	0	0	0	-18	$R_4 - \frac{1}{2}R_1$
Ι	0	$-\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	0	1	0	-1	$R_5 + \frac{1}{4}R_1$

Challenge

2 continued

The *y*-column still has a negative value in the I row and only the *x*-row has a positive θ value so we need to use that as the pivot giving.

b.v.	x	у	z	<i>s</i> ₁	<i>s</i> ₂	<i>S</i> 3	<i>a</i> ₁	Value	Row operation
у	$\frac{4}{3}$	1	$\frac{2}{3}$	$\frac{1}{3}$	0	0	0	12	$\frac{4}{3}R_1$
<i>s</i> ₂	0	0	4	0	1	0	0	52	$R_{2} + R_{1}$
<i>a</i> ₁	5	0	3	$-\frac{1}{4}$	1	1	0	46	$R_3 + 5R_1$
D	6	0	2	1	0	0	0	36	$R_4 + 6R_1$
Ι	$\frac{1}{3}$	0	$\frac{2}{3}$	$\frac{1}{3}$	0	1	0	2	$R_5 + \frac{1}{3}R_1$

There are now no negative entries in the bottom two rows so we have reached the optimal solution:

y = 12, x = z = 0 and C = -36