Transportation problems 1A

1 a Setting up the table:

	P	Q	R	Supply
A				32
В				44
C				34
Demand	28	45	37	110

Starting in the north-west corner, depot P requires 28 units, this does not exhaust the stock of supplier A.

	P	Q	R	Supply
A	28			32
В				44
<i>C</i>				34
Demand	28	45	37	110

Moving one square to the right allocate 32 - 28 = 4 units. The stock of supplier A is exhausted but demand at Q has not been met.

	P	Q	R	Supply
A	28	4		32
В				44
C				34
Demand	28	45	37	110

Moving one square down allocate 45 - 4 = 41 units. This satisfies the demand at Q bit does not exhaust the stock at supplier B.

	P	Q	R	Supply
A	28	4		32
В		41		44
\boldsymbol{C}				34
Demand	28	45	37	110

1 a (continued)

Moving one square to the right allocate 44 - 41 = 3 units. The stock of supplier B is exhausted but demand at R has not been met.

	P	Q	R	Supply
\boldsymbol{A}	28	4		32
В		41	3	44
C				34
Demand	28	45	37	110

Moving one square down allocate 37 - 3 = 34 units. This satisfies the demand at R and exhausts the stock at supplier C. This is the final table.

	P	Q	R	Supply
A	28	4		32
В		41	3	44
\boldsymbol{C}			34	34
Demand	28	45	37	110

- **b** Supply points = 3, demand points = 3, occupied cells = 5. 3+3-1=5= number of occupied cells. So the formula holds.
- c Highlighting the unit cost in the occupied cells:

	P	Q	R	Supply
A	150	213	222	32
В	175	204	218	44
C	188	198	246	34
Demand	28	45	37	110

$$Cost = 28 \times 150 + 4 \times 213 + 41 \times 204 + 3 \times 218 + 34 \times 246 = 22434$$

2 a Following the same method as question 1a, the final table is:

	P	Q	R	S	Supply
A	21	32	1		54
В			50	17	67
C				29	29
Demand	21	32	51	46	150

b Supply points = 3, demand points = 4, occupied cells = 6. 3+4-1=6 = number of occupied cells. So the formula holds.

2 c Highlighting the unit cost in the occupied cells:

	P	Q	R	S	Supply
A	27	33	34	41	54
В	31	29	37	30	67
C	40	32	28	35	29
Demand	21	32	51	46	150

Cost =
$$21 \times 27 + 32 \times 33 + 1 \times 34 + 50 \times 37 + 17 \times 30 + 29 \times 35 = 5032$$

3 a Following the same method as question 1a, the final table is:

	P	Q	R	Supply
A	123			123
В	77	66		143
\boldsymbol{C}		34	50	84
D			150	150
Demand	200	100	200	500

b Supply points = 4, demand points = 3. Occupied cells = 6. 4+3-1=6 = number of occupied cells. So the formula holds.

c Highlighting the unit cost in the occupied cells:

	P	Q	R	Supply
A	17	24	19	123
В	15	21	25	143
C	19	22	18	84
D	20	27	16	150
Demand	200	100	200	500

Cost =
$$123 \times 17 + 77 \times 15 + 66 \times 21 + 34 \times 22 + 50 \times 18 + 150 \times 16 = 8680$$

4 a Following the same method as question 1a, the final table is:

	P	Q	R	S	Supply
A	134				134
В	41	162			203
\boldsymbol{C}		13	163		176
D			12	175	187
Demand	175	175	175	175	700

b Supply points = 4, demand points = 4, occupied cells = 7. 4+4-1=7 = number of occupied cells. So the formula holds.

4 c Highlighting the unit cost in the occupied cells:

	P	Q	R	S	Supply
A	56	86	80	61	134
В	59	76	78	65	203
\boldsymbol{C}	62	70	57	67	176
D	60	68	75	71	187
Demand	175	175	175	175	700

$$Cost = 134 \times 56 + 41 \times 59 + 162 \times 76 + 13 \times 70 + 163 \times 57 + 12 \times 75 + 175 \times 71 = 45761$$