Transportation problems 1B - 1 a The total supply is 200, but the total demand is 180. A dummy is needed to absorb this excess, so that total supply equals total demand. - **b** Adding a dummy column *E*, where the demand is 20 (the amount by which the supply exceeds the demand) gives: | | A | В | C | D | Dummy | Supply | |--------|----|----|----|----|-------|--------| | X | 27 | 33 | 34 | 41 | 0 | 60 | | Y | 31 | 29 | 37 | 30 | 0 | 60 | | Z | 40 | 32 | 28 | 35 | 0 | 80 | | Demand | 40 | 70 | 50 | 20 | 20 | 200 | Finding a solution using the north-west corner method gives: | | A | В | C | D | Dummy | Supply | |--------|----|----|----|----|-------|--------| | X | 40 | 20 | | | | 60 | | Y | | 50 | 10 | | | 60 | | Z | | | 40 | 20 | 20 | 80 | | Demand | 40 | 70 | 50 | 20 | 20 | 200 | $$Cost = 40 \times 27 + 20 \times 33 + 50 \times 29 + 10 \times 37 + 40 \times 28 + 20 \times 35 + 20 \times 0 = 5380 \ p = \pounds 53.80$$ - 2 a A degenerate solution occurs when the number of cells used in a solution is fewer than the number of rows + number of columns 1. It will happen when an entry, other than the last, completes both the supply requirement of the row and the demand requirement of the column. - **b** Units transported are: | | K | L | M | N | Supply | |--------|----|----|----|----|--------| | A | 20 | | | | 20 | | В | 5 | 10 | | | 15 | | C | | | 18 | 2 | 20 | | D | | | | 20 | 20 | | Demand | 25 | 10 | 18 | 22 | 75 | There are 4 rows and 4 columns, so a non-degenerate solution would use 4 + 4 - 1 = 7 cells. This solution only uses 6 cells but fulfils all the supply and demand needs, so it is a degenerate solution. **2 c** The table in part **b** has a diagonal 'move' from cell *BL* to cell *CM*. To make the solution in part **b** non-degenerate, a zero must be placed in either cell *CL* or cell *BM* so that 7 cells are filled. These are therefore both non-degenerate initial solutions: | | K | L | M | N | Supply | |--------|----|----|----|----|--------| | A | 20 | | | | 20 | | В | 5 | 10 | | | 15 | | C | | 0 | 18 | 2 | 20 | | D | | | | 20 | 20 | | Demand | 25 | 10 | 18 | 22 | 75 | or: | | K | L | M | N | Supply | |------------------|----|----|----|----|--------| | A | 20 | | | | 20 | | В | 5 | 10 | 0 | | 15 | | \boldsymbol{C} | | | 18 | 2 | 20 | | D | | | | 20 | 20 | | Demand | 25 | 10 | 18 | 22 | 75 | 3 a There are four rows and three columns, so a non-degenerate solution will use 4 + 3 - 1 = 6 cells. Since the initial north-west corner solution is degenerate, the solution must use 5 or less cells. Start applying the north-west corner method. After two entries the table is: | | L | M | N | Supply | |--------|----|----|----|--------| | P | 15 | 7 | | 22 | | Q | | | | а | | R | | | | 11 | | S | | | | b | | Demand | 15 | 17 | 20 | | To fill in cell *QM*, suppose a < 10. Then: | | L | M | N | Supply | |--------|----|--------|--------|--------| | P | 15 | 7 | | 22 | | Q | | а | | а | | R | | 10 – a | a + 1 | 11 | | S | | | 19 – a | b | | Demand | 15 | 17 | 20 | | As the solution is balanced 19 - a = b, but this solution is non-degenerate as 6 cells are used. Hence $a \ge 10$. So fill in cell *QM*, assuming $a \ge 10$. Then: | | L | M | N | Supply | |--------|----|----|--------|--------| | P | 15 | 7 | | 22 | | Q | | 10 | a – 10 | а | | R | | | | 11 | | S | | | | b | | Demand | 15 | 17 | 20 | | As the problem is balanced, the supply from R and S must be used to satisfy in part the demand from N, which means cells RN and SN must be non-zero. But if a > 10, this would give a solution that uses 6 cells, which would be non-degenerate. A degenerate solution is therefore only obtained if a = 10. As the problem is balanced, total supply must equal total demand. So: $$15 + 17 + 20 = 22 + a + 11 + b$$ $$\Rightarrow a+b=19$$ As a = 10, this gives b = 9 3 **b** Using the preliminary work towards a solution using the north-west corner method in part **a**, the solution is: | | L | M | N | Supply | |--------|----|----|----|--------| | P | 15 | 7 | | 22 | | Q | | 10 | | 10 | | R | | | 11 | 11 | | S | | | 9 | 9 | | Demand | 15 | 17 | 20 | 52 | - **c** The solution is degenerate because the number of non-empty cells, $5 \neq 4 + 3 1$. Entering a zero into cell *QN* or cell *RM* will make the solution non-degenerate. - 4 a Total demand = 24 + 30 + 45 = 99; Total supply = 28 + 26 + 31 = 85As the total supply \neq total demand, the problem is unbalanced. To balance the problem, the total supply must be increased and this is achieved by adding an extra dummy supply point, D, with a supply of 99 - 85 = 14. The total demand and the total supply now balance. **b** Units transported: | | P | Q | R | Supply | |------------------|----|----|----|--------| | \boldsymbol{A} | 24 | 4 | | 28 | | В | | 26 | 0 | 26 | | C | | | 31 | 31 | | D | | | 14 | 14 | | Demand | 24 | 30 | 45 | | As there are 4 rows and 3 columns, a non-degenerate solution has 4 + 3 - 1 = 6 filled cells. To avoid a degenerate solution, a zero has been entered in cell *BR*. A solution with a zero in cell CQ and cell BR blank is also an acceptable non-degenerate solution. **c** As row *D* is the dummy supply to balance the problem, this means that garage *R* will receive 14 fewer tyres than requested. It will receive 31 tyres rather than the 45 tyres demanded.