Transportation problems Mixed exercise

1 a Applying the north-west corner method gives:

	L	M	Supply
A	15		15
B	1	4	5
С		8	8
Demand	16	12	28

b The shadow costs of the initial solution are:

		20	10
		L	М
0	A	20	
20	B	40	30
80	С		90

Improvement indices for cell:

AM = 70 - 0 - 10 = 60 CL = 60 - 80 - 20 = -40

The solution may not be optimal, since there is a cell, CL, with a negative improvement index.

First iteration

The entering cell is CL. Entering θ into cell CL and applying the stepping-stone method:

	L	М	Supply
A	15		15
В	$1-\theta$	$4 + \theta$	5
С	θ	$8-\theta$	8
Demand	16	12	28

The maximum value of θ is 1, making *BL* the exiting cell. This is the improved solution.

	L	M	Supply
A	15		15
B		5	5
С	1	7	8
Demand	16	12	28

1 b (continued)

The shadow costs of the new solution are:

		20	50
		L	М
0	A	20	
-20	В		30
40	С	60	90

Improvement indices for cells: AM = 70 - 0 - 50 = 20 BL = 40 - (-20) - 20 = 40

c There are no negative improvement indices, so the solution produced after the first iteration (in part b is optimal. This solution is:

15 units from A to L5 units from B to M1 unit from C to L7 units from C to M

 $Cost = 15 \times 20 + 5 \times 30 + 1 \times 60 + 7 \times 90 = \text{\pounds}1140$

d Let x_{ij} be the number of cars transported from i to j where

$$i \in \{A, B, C\}$$
$$j \in \{L, M\}$$
$$x_{ii} \ge 0$$

Minimise:

$$C = 20x_{AL} + 70x_{AM} + 40x_{BL} + 30x_{BM} + 60x_{CL} + 90x_{CM}$$

Subject to:

 $\begin{aligned} x_{AL} + x_{AM} &\leq 15 \\ x_{BL} + x_{BM} &\leq 5 \\ x_{CL} + x_{CM} &\leq 8 \\ x_{AL} + x_{BL} + x_{CL} &\geq 16 \\ x_{AM} + x_{BM} + x_{CM} &\geq 12 \end{aligned}$

2 a Applying the north-west corner method gives:

	Р	Q	R	Supply
F	10	5		15
G		25	10	35
Н			10	10
Demand	10	30	20	60

2 b The shadow costs of the initial solution are:

		23	21	22
		Р	Q	R
0	F	23	21	
2	G		23	24
1	H			23

Improvement indices for cells:

FR = 22 - 0 - 22 = 0	HP = 22 - 1 - 23 = -2
GP = 21 - 2 - 23 = -4	HQ = 21 - 1 - 21 = -1

The solution may not be optimal, since there are cells with negative improvement indices.

First iteration

The entering cell is GP. Entering θ into cell GP and applying the stepping-stone method:

	Р	Q	R	Supply
F	$10-\theta$	$5+\theta$		15
G	θ	$25-\theta$	10	35
H			10	10
Demand	10	30	20	60

The maximum value of θ is 10, making FP the exiting cell. This is the improved solution.

	Р	Q	R	Supply
F		15		15
G	10	15	10	35
H			10	10
Demand	10	30	20	60

The shadow costs of the new solution are:

		19	21	22
		Р	Q	R
0	F		21	
2	G	21	23	24
1	H			23

Improvement indices for cells:

FP = 23 - 0 - 19 = 4	HP = 22 - 1 - 19 = 2
FR = 22 - 0 - 22 = 0	HQ = 21 - 1 - 21 = -1

2 b (continued)

Second iteration

The entering cell is HQ. Entering θ into cell HQ and applying the stepping-stone method:

	Р	Q	R	Supply
F		15		15
G	10	$15-\theta$	$10 + \theta$	35
H		θ	$10-\theta$	10
Demand	10	30	20	60

The maximum value of θ is 10, making *HR* the exiting cell. This is the improved solution.

	Р	Q	R	Supply
F		15		15
G	10	5	20	35
Н		10		10
Demand	10	30	20	60

The shadow costs of the new solution are:

		19	21	22
		Р	Q	R
0	F		21	
2	G	21	23	24
0	H		21	

Improvement indices for cells:

FP = 23 - 0 - 19 = 4	HP = 22 - 0 - 19 = 3
FR = 22 - 0 - 22 = 0	HR = 23 - 0 - 22 = 1

c There are no negative improvement indices, so the solution is optimal.

d Cost = $10 \times 21 + 15 \times 21 + 5 \times 23 + 10 \times 21 + 20 \times 24 = 1330$

2 e Third iteration

The entering cell is *FR*, the cell with a zero improvement index (see part **b**). Entering θ into cell *FR* and applying the stepping-stone method:

	Р	Q	R	Supply
F		$15-\theta$	θ	15
G	10	$5+\theta$	$20 - \theta$	35
H		10		10
Demand	10	30	20	60

The maximum value of θ is 15, making FQ the exiting cell. This is the new solution.

	Р	Q	R	Supply
F			15	15
G	10	20	5	35
Н		10		10
Demand	10	30	20	60

The shadow costs of the new solution are:

		19	21	22
		Р	Q	R
0	F			22
2	G	21	23	24
0	H		21	

Improvement indices for cells:

FP = 23 - 0 - 19 = 4	HP = 22 - 0 - 19 = 3
FQ = 21 - 0 - 21 = 0	HR = 23 - 0 - 22 = 1

 $Cost = 10 \times 21 + 20 \times 23 + 10 \times 21 + 15 \times 22 + 5 \times 24 = 1330$ The cost of this second optimal solution is the same as that found for the solution in part **b**.

- 3 a Adding a zero to cell *LY* ensures that the solution is non-degenerate. The problem has 4 rows and 3 columns so a non-degenerate solution must have 4 + 3 1 = 6 non-blank cells. If cell *LY* is left blank the solution would be degenerate.
 - **b** Cost = $25 \times 8 + 5 \times 5 + 40 \times 5 + 50 \times 10 + 50 \times 15 = \text{\pounds}1675$

	X	Y	Ζ	Supply
J	$25-\theta$	$5+\theta$		30
K		40		40
L		$0 - \theta$	$50 + \theta$	50
М	θ		$50-\theta$	50
Demand	25	45	100	170

3 c Entering θ into cell *MX* and applying the stepping-stone method:

The maximum value of θ is 0, making LY the exiting cell. This is the new solution.

	X	Y	Ζ	Supply
J	25	5		30
K		40		40
L			50	50
M	0		50	50
Demand	25	45	100	170

 $Cost = 25 \times 8 + 5 \times 5 + 40 \times 5 + 50 \times 10 + 50 \times 15 = \text{\pounds}1675$

d The shadow costs of the solution in part **c** are:

		8	5	17
		X	Y	Ζ
0	J	8	5	
0	K		5	
_7	L			10
-2	M	6		15

Improvement indices for cells:

JZ = 7 - 0 - 17 = -10	LX = 7 - (-7) - 8 = 6
KX = 5 - 0 - 8 = -3	LY = 2 - (-7) - 5 = 4
KZ = 9 - 0 - 17 = -8	MY = 3 - (-2) - 5 = 0

This solution is not optimal since there are negative improvement indices.

3 e The shadow costs of the new solution found after two further iterations are:

		6	3	7
		X	Y	Z
0	J			7
2	K		5	9
3	L			10
0	M	6	3	

Improvement indices for cells:

JX = 8 - 0 - 6 = 2	LX = 7 - 3 - 6 = -2
JY = 5 - 0 - 3 = 2	LY = 2 - 3 - 3 = -4
KX = 5 - 2 - 6 = -3	MZ = 15 - 0 - 7 = 8

The entering cell is LY. Entering θ into cell LY and applying the stepping-stone method:

	X	Y	Z	Supply
J			30	30
K		20 <i>-</i> θ	$20 + \theta$	40
L		θ	$50-\theta$	50
M	25	25		50
Demand	25	45	100	170

The maximum value of θ is 20, making KY the exiting cell. This is the new solution.

	X	Y	Ζ	Supply
J			30	30
K			40	40
L		20	30	50
M	25	25		50
Demand	25	45	100	170

The shadow costs of this solution are:

		2	-1	7
		X	Y	Z
0	J			7
2	K			9
3	L		2	10
4	M	6	3	

3 e (continued)

Improvement indices for cells:

JX = 8 - 0 - 2 = 6	KY = 5 - 2 - (-1) = 4
JY = 5 - 0 - (-1) = 6	LX = 7 - 3 - 2 = 2
KX = 5 - 2 - 2 = 1	MZ = 15 - 4 - 7 = 4

All improvement indices are non-negative, so this solution is optimal.

 $Cost = 25 \times 6 + 20 \times 2 + 25 \times 3 + 30 \times 7 + 40 \times 9 + 30 \times 10 = \text{\pounds}1135$

- **3** f Cell *JY* is not part of the optimum route and increasing the cost will not change this situation, so the cost of the optimal solution will not be affected.
- 4 a The total demand is 150, the total stock is 170, so demand < stock. A dummy demand point, V, is to absorb the surplus stock. The problem becomes:

	S	Т	U	V	Supply
A	6	10	7	0	50
В	7	5	8	0	70
С	6	7	7	0	50
Demand	100	30	20	20	170

b Applying the north-west corner method to get an initial solution gives:

	S	Т	U	V	Supply
A	50				50
B	50	20			70
С		10	20	20	50
Demand	100	30	20	20	170

c The shadow costs of the initial solution in part **b** are:

		6	4	4	-3
		S	Т	U	V
0	A	6			
1	B	7	5		
3	С		7	7	0

Improvement indices for cells:

AT = 10 - 0 - 4 = 6	BU = 8 - 1 - 4 = 3
AU = 7 - 0 - 4 = 3	BV = 0 - 1 - (-3) = 2
AV = 0 - 0 - (-3) = 3	CS = 6 - 3 - 6 = -3

4 c (continued)

First iteration

The entering cell is CS. Entering θ into cell CS and applying the stepping-stone method:

	S	Т	U	V	Supply
A	50				50
В	$50 - \theta$	$20 + \theta$			70
C	θ	$10 - \theta$	20	20	50
Demand	100	30	20	20	170

The maximum value of θ is 10, making CT the exiting cell. This is the new solution.

	S	Т	U	V	Supply
A	50				50
В	40	30			70
С	10		20	20	50
Demand	100	30	20	20	170

The shadow costs of the new solution are:

		6	4	7	0
		S	Т	U	V
0	A	6			
1	B	7	5		
0	C	6		7	0

Improvement indices for cells:

AT = 10 - 0 - 4 = 6	BU = 8 - 1 - 7 = 0
AU = 7 - 0 - 7 = 0	BV = 0 - 1 - 0 = -1
AV = 0 - 0 - 0 = 0	CT = 7 - 0 - 4 = 3

Second iteration

The entering cell is *BV*. Entering θ into cell *BV* and applying the stepping-stone method:

	S	Т	U	V	Supply
A	50				50
В	$40 - \theta$	30		θ	70
C	$10 + \theta$		20	$20 - \theta$	50
Demand	100	30	20	20	170

4 c (continued)

The maximum value of θ is 20, making CV the exiting cell. This is the new solution.

	S	Т	U	V	Supply
A	50				50
В	20	30		20	70
С	30		20		50
Demand	100	30	20	20	170

The shadow costs of the new solution are:

		6	4	7	-1
		S	Т	U	V
0	A	6			
1	B	7	5		0
0	С	6		7	

Improvement indices for cells:

AT = 10 - 0 - 4 = 6	BU = 8 - 1 - 7 = 0
AU = 7 - 0 - 7 = 0	CT = 7 - 0 - 4 = 3
AV = 0 - 0 - (-1) = 1	CV = 0 - 0 - (-1) = 1

All improvement indices are non-negative, so this solution is optimal. Note that the two zero improvement indices indicate that there are two further optimal solutions but the question does not require that these are found.

d Cost = $50 \times 6 + 20 \times 7 + 30 \times 6 + 30 \times 5 + 20 \times 7 + 20 \times 0 = \text{\pounds}910$

e Let x_{ij} be the number of van load of fruit-tree seedlings transported from *i* to *j* where

$$i \in \{A, B, C\}$$

 $j \in \{S, T, U, V\}$ V is a dummy demand point
 $x_{ij} \ge 0$

Minimise:

$$C = 6x_{AS} + 10x_{AT} + 7x_{AU} + 7x_{BS} + 5x_{BT} + 8x_{BU} + 6x_{CS} + 7x_{CT} + 7x_{CU}$$

Subject to:

5	r + r + r > 100
$x_{AS} + x_{AT} + x_{AU} + x_{AV} \leq 50$	$x_{AS} + x_{BS} + x_{CS} \ge 100$
	$x_{AT} + x_{BT} + x_{CT} \ge 30$
$x_{BS} + x_{BT} + x_{BU} + x_{BV} \leqslant 70$	r + r + r > 20
$x_{CS} + x_{CT} + x_{CU} + x_{CV} \leq 50$	$x_{AU} + x_{BU} + x_{CU} \ge 20$
	$x_{AV} + x_{BV} + x_{CV} \ge 20$

SolutionBank

5 Total demand = 16 + 20 + 26 + 17 = 79 Total supply = 28 + 33 + 18 = 79 Total demand = Total supply
So the problem is balanced and a dummy demand point or dummy supply point is not required.

Let x_{ii} be the number of rolls of carpet transported from *i* to *j* where

$$i \in \{A, B, C\}$$
$$j \in \{P, Q, R, S\}$$
$$x_{ij} \ge 0$$

Minimise:

$$C = 28x_{AP} + 12x_{AQ} + 19x_{AR} + 16x_{AS} + 31x_{BP} + 28x_{BQ} + 23x_{BR} + 19x_{BS} + 18x_{CP} + 21x_{CQ} + 22x_{CR} + 28x_{CS}$$

Subject to:

	$x_{1R} + x_{RR} + x_{CR} \ge 16$
$x_{AP} + x_{AQ} + x_{AR} + x_{AS} \leqslant 28$	$\frac{Ar}{Br} = \frac{br}{Cr} > 20$
$x_{pp} + x_{pq} + x_{pp} + x_{pq} \le 33$	$x_{AQ} + x_{BQ} + x_{CQ} \ge 20$
BP BQ BR BS	$x_{AR} + x_{BR} + x_{CR} \ge 26$
$x_{CP} + x_{CQ} + x_{CR} + x_{CS} \leqslant 18$	$x_{AS} + x_{PS} + x_{CS} \ge 17$

Challenge

a Total demand = 15 + 9 + 11 = 35Total supply = 14 + 12 + 16 = 42Total demand \neq Total supply

The problem is unbalanced, total supply is greater than total demand so a dummy demand point, S, needs to be set up to absorb the excess supply. Stock in cells AS, BS, and CS remains in warehouses A, B and C respectively, but incurs weekly storage charges. These charges are £3, £5 and £4 respectively. The problem therefore can be represented as:

	Р	Q	R	S	Stock
A	7	8	6	3	14
В	5	7	9	5	12
С	6	8	8	4	16
Demand	15	9	11	7	42

Challenge

b Let x_{ij} be the units of stock transported from *i* to *j* where

 $i \in \{A, B, C\}$ $j \in \{P, Q, R, S\}$ $x_{ij} \ge 0$

Minimise:

$$C = 7x_{AP} + 8x_{AQ} + 6x_{AR} + 3x_{AS} + 5x_{BP} + 7x_{BQ} + 9x_{BR} + 5x_{BS} + 6x_{CP} + 8x_{CQ} + 8x_{CR} + 4x_{CS}$$

Subject to:

$x_{AP} + x_{AQ} + x_{AR} + x_{AS} \leq 14$	$x_{AP} + x_{BP} + x_{CP} \ge 15$
$x_{BP} + x_{BQ} + x_{BR} + x_{BS} \leqslant 12$	$x_{AQ} + x_{BQ} + x_{CQ} \ge 9$
$x_{CP} + x_{CQ} + x_{CR} + x_{CS} \leqslant 16$	$x_{AR} + x_{BR} + x_{CR} \ge 11$
	$x_{AS} + x_{BS} + x_{CS} \ge 7$