Exam-style practice – A Level

1 a The auxiliary equation is

 $m^2 - 6m + 9 = 0$ Hence $(m - 3)^2 = 0$ Hence m = 3 (repeated root) Using the standard form for the general solution of recurrence relations with repeated roots: $u_n = A(3)^n + Bn(3)^n$

b Since g(x) is a constant and the roots of the auxiliary equation $\neq 1$, let λ be a particular solution to the recurrence relation.

Then

$$\lambda - 6\lambda + 9\lambda = 15 \Longrightarrow \lambda = \frac{15}{4}$$

Hence the general solution is

$$u_{n} = A(3)^{n} + Bn(3)^{n} + \frac{15}{4}$$
$$u_{1} = \frac{21}{4} = 3A + 3B + \frac{15}{4} \Longrightarrow A + B = \frac{1}{2}$$
$$u_{2} = -\frac{93}{4} = 9A + 18B + \frac{15}{4} \Longrightarrow A + 2B = -3$$

Subtracting these equations gives

$$B = -\frac{7}{2}$$
 hence $A = 4$

The particular solution of the recurrence relation is therefore:

$$u_n = 4(3)^n - \frac{7}{2}n(3)^n + \frac{15}{4}$$

2 a Every number in column 3 is smaller than the corresponding number in column 2 so *Y* would never play 2 and the column can be removed from the pay-off matrix:

	Y plays 1	Y plays 3
X plays 1	3	1
X plays 2	1	2
X plays 3	-2	1
X plays 4	1	4

b

	Y plays 1	Y plays 3	
X plays 1	3	1	1
X plays 2	1	2	1
X plays 3	-2	1	-2
X plays 4	1	4	1
	3	4	

Row maximin = 1

Column minimax = 3

Since these are not equal, there is no stable solution and mixed strategies should be used.

The value of the game to *Y* is

$$-4+3\left(\frac{3}{5}\right)=-\frac{11}{5}$$

3 a Reducing rows gives:

	W	X	Y	Z
Р	0	6	17	12
Q	0	2	5	3
R	0	11	8	13
S	0	8	2	6

Reducing columns gives:

	W	X	Y	Z
Р	0	4	15	9
Q	0	0	3	0
R	0	9	6	10
S	0	6	0	3

Minimum number of lines required to cover all of the zeroes is 3:

	W	X	Y	Z
Р	0	(4)	15	9
Q	0	0	- 3	0
R	0	9	6	10
S	0	6	0	3

The smallest uncovered element is 4 so subtract 4 from each uncovered element and add 4 to each element covered twice:

	W	X	Y	Z
Р	0	0	11	5
Q	4	0	3	0
R	0	5	2	6
S	4	6	0	3

Four lines are now required to cover the zeroes so the solution is optimal:

P does X Q does Z R does W S does Y

Total cost = $41 + 46 + 37 + 44 = \text{\pounds}168$

Decision Mathematics 2

3 b $x_{ij} = \begin{cases} 1 & \text{if worker } i \text{ does task } j \\ 0 & \text{otherwise} \end{cases}$ where: $i \in \{P, Q, R, S\}$ and $j \in \{W, X, Y, Z\}$ The problem is to minimise the following: $C = 35x_{PW} + 41x_{PX} + 52x_{PY} + 47x_{PZ}$ $+43x_{QW} + 45x_{QX} + 48x_{QY} + 46x_{QZ}$ $+37x_{RW} + 48x_{RX} + 45x_{RY} + 50x_{RZ}$ $+42x_{SW} + 50x_{SX} + 44x_{SY} + 48x_{SZ}$

Subject to:

$$\sum x_{iW} = 1, \sum x_{iX} = 1, \sum x_{iY} = 1, \sum x_{iZ} = 1$$
$$\sum x_{Pj} = 1, \sum x_{Qj} = 1, \sum x_{Rj} = 1, \sum x_{Sj} = 1$$

4 a

	Р	Q	R	Supply
A	10			10
В	2	14	0	16
С			14	14
Demand	12	14	14	40

Note that the zero could be placed in cell CQ

Total $cost = \pounds 460$

b

Shac	Shadow costs		7	11	
		Р	Q	R	Supply
0	A	(11)	12	15	10
3	В	(14)	(10)	$\begin{pmatrix} 14 \end{pmatrix}$	16
2	С	12	16	(13)	14
	Demand	12	14	14	40

Improvement indices:

AQ = 12 - 7 = 5 AR = 15 - 11 = 4 CP = 12 - 11 - 2 = -1CQ = 16 - 7 - 2 = 7

4 a (continued)

Entering cell: CP $\theta = 2$ Exiting cell: BP

	Р	Q	R	Supply
A	10			10
В	2- heta	14	θ	16
С	θ		$14 - \theta$	14
Demand	12	14	14	40

Improved solution:

	Р	Q	R	Supply
A	10			10
В		14	2	16
С	2		12	14
Demand	12	14	14	40

Shadow costs		11	8	12	
		P	Q	R	Supply
0	A	$\begin{pmatrix} 11 \end{pmatrix}$	12	15	10
2	В	14	$\begin{pmatrix} 10 \end{pmatrix}$	$\begin{pmatrix} 14 \end{pmatrix}$	16
1	С	$\begin{pmatrix} 12 \end{pmatrix}$	16	$\begin{pmatrix} 13 \end{pmatrix}$	14
	Demand	12	14	14	40

Improvement indices:

AQ = 12 - 8 = 4 AR = 15 - 12 = 3 BP = 14 - 11 - 2 = 1CQ = 16 - 8 - 1 = 7

There are no negative improvement indices so the solution is optimal. Total $cost = \pounds 458$

5 a x = 31 + 7 - 14 - 14 = 10

w = y + 7

Since max w is 24 and min y is 17, increasing y from this min will lead to w exceeding its maximum therefore

w = 24 y = 17z = w + 18 + 31 - 40 = 33

b i 25 + 10 + 14 + 35 = 84

ii 35 - 4 + 14 + 35 = 80

- c The maximum flow is less than or equal to 80
- **d** The flow through *SB* can be increased by 2 units leading to a flow-augmenting path *SBADT*. The flow through *SC* can be increased by 2 units leading to a flow-augmenting path *SCFT*.
- e The initial flow has value 73 and the augmented flow has value 77. Since the cut through *SA*, *SB* and *SC* has maximum value 24 + 33 + 20 = 77, by the maximum flow-minimum cut theorem, the flow is now maximal.
- 6 a Amounts shown are in £1000s

The highest EMV is $\frac{25}{3}$ so Project *A* is the best option.

b A small start-up company may not have the resources to withstand the possible loss associated with project *A*. A utility function could be chosen to reflect a degree of risk aversion, making it more appropriate than the EMVs alone.

Decision Mathematics 2

d Project *B* is the favoured option using the utility function.

7

Stage (demand)	State	Action	Destination	Value (£s)
Oct (15)	2	13	0	300 + 10000 = 10300*
	1	14	0	150 + 10000 = 10150*
	0	15	0	800 + 10000 = 10800*
Sept (17)	2	15	0	300 + 800 + 10000 + 10800 = 21900
		16	1	300 + 800 + 10000 + 10150 = 21250*
		17	2	300 + 800 + 10000 + 10300 = 21400
	1	16	0	$\frac{150 + 800 + 10000}{+ 10800 = 21750}$
		17	1	$\frac{150 + 800 + 10000}{+ 10150 = 21100*}$
	0	17	0	800 + 10000 + 10800 = 21600*
Aug (13)	2	11	0	$\frac{300 + 10000 +}{21600 = 31900}$
		12	1	$\frac{300 + 10000 +}{21100 = 31400*}$
		13	2	$\frac{300 + 10000 +}{21250 = 31550}$
	1	12	0	$\frac{150 + 10000 +}{21600 = 31750}$
		13	1	$\frac{150 + 10000 +}{21100 = 31250*}$

7 (continued)

		14	2	$\frac{150 + 10000 +}{21250 = 31400}$
	0	13	0	$\frac{10000 + 21600}{31600} =$
		14	1	$\frac{10000 + 21100}{31100*} =$
		15	2	800 + 10000 + 21250 = 32050
July (15)	0	15	0	800 + 10000 + 31100 = 41900*
		16	1	$\frac{800 + 10000 +}{31250 = 42050}$
		17	2	$\frac{800 + 10000 +}{31400 = 42200}$

The minimum production cost is $\pounds 41900$

The production schedule should be to make 15 in July, 14 in August, 17 in September and 14 in October.