Exam-style Practice – AS Level

1 Maximum profit is required so subtract each element from 62, the largest value in the original matrix, to give:

	1	2	3	4	5
A	11	15	0	12	7
В	8	11	2	9	11
С	13	10	4	7	9
D	10	6	1	4	5
E	6	14	3	7	6

Reducing rows gives:

	1	2	3	4	5
A	11	15	0	12	7
В	6	9	0	7	9
С	9	6	0	3	5
D	9	5	0	3	4
E	3	11	0	4	3

Reducing columns gives the reduced cost matrix:

		1	2	3	4	5
	A	8	10	d	9	4
	B	3	4	ġ	4	6
	·· <i>€</i>	6	· <u> </u> ·			2
1	· <i>Đ</i>	6			0	
1	· <i>E</i>	0	6	· ·		<u>θ</u>
1					-	

The zeroes in the reduced cost matrix can be covered by 4 lines (as shown above). The smallest uncovered element is 3. So adding 3 to the element covered by two lines and subtracting 3 from the uncovered elements gives:

	1	2	3	4	5
A	5	7	0	6	1
В	0	1	0	1	3
С	6	1	3	0	2
D	6	0	3	0	1
E	0	6	3	1	0

Five lines are now required to cover the zeroes so the solution is optimal. The solution is: A does task 3, B - 1, C - 4, D - 2, E - 5Maximum profit = $62 + 54 + 55 + 56 + 56 = \text{\pounds}283$ 2 a A zero-sum game is a game in which each player's gain or loss is balanced by the losses or gains of the other player (or players).

L		2	
r	1		
	1		

	Y plays 1	Y plays 2	Y plays 3	Y plays 4	Row minimum
X plays 1	3	-1	2	1	-1
X plays 2	1	2	4	3	1
Column maximum	3	2	4	3	

Column minimax = 2 Row maximin = 1 Since these are not equal, there is no stable solution.

- **c** Assume that player X plays 1 with probability p and 2 with probability (1 p):
 - If *Y* plays 1, the value of the game to *X* is 3p + 1 p = 2p + 1
 - If *Y* plays 2, the value of the game to *X* is -p + 2(1-p) = 2 3p
 - If *Y* plays 3, the value of the game to *X* is 2p + 4(1-p) = 4 2p
 - If *Y* plays 4, the value of the game to *X* is p + 3(1-p) = 3 2p

Showing these options on a graph gives:

The optimum strategy for X is when $1 + 2p = 2 - 3p \implies p = \frac{1}{5}$

The value of the game to $X = 1 + 2\left(\frac{1}{5}\right) = \frac{7}{5}$

- **3** a *K* is not a cut since it does not separate the source *S* from the sink *T*. Water can still flow along *SBEGT* for example.
 - **b** i Capacity of cut C = 60 + 14 + 16 = 90
 - ii Using conservation of flow at B: $12 + x + 12 = 38 \implies x = 14$
 - iii Flow through the network = flow leaving the source = 42 + 38 = 80Flow through the network = flow entering the sink = 60 + 20 = 80
 - **c** The flow-augmenting path *SACDGT* increases the flow by 3 as arcs *SA* and *DG* have maximum spare capacities of 3. The flow from *D* to *C* is reduced from 4 to 1.

Decision Mathematics 2

3 d The initial flow was 80 (part b iii) and has been increased by 3 (part c) so it is now 83. The cut through *CF*, *DF*, *DG* and *EG* must be a minimum cut because it only passes through saturated arcs. (The increase flow of 3 down *SACDGT* means arc DG is saturated.) The value of the cut is 58 + 2 + 14 + 9 = 83. As the minimum cut value equals the maximum flow value, by the maximum flow-minimum cut theorem the flow of 83 is maximal.

4 a
$$L_n = \left(1 + \frac{r}{100}\right)L_{n-1} - p$$

b The recurrence relation is of the form $u_n = au_{n-1} + g(n)$ with g(n) constant so let λ be a particular solution to the recurrence relation.

Then
$$\lambda = \left(1 + \frac{r}{100}\right)\lambda - p = \lambda + \frac{r\lambda}{100} - p$$

 $\Rightarrow \frac{r\lambda}{100} = p \Rightarrow \lambda = \frac{100\,p}{r}$

c General solution = complementary function + particular solution, hence

$$\begin{split} L_n &= k \left(1 + \frac{r}{100} \right)^n + \frac{100 \, p}{r} \\ L_0 &= X \Longrightarrow X = k + \frac{100 \, p}{r} \Longrightarrow k = X - \frac{100 \, p}{r} \\ \text{Hence the general solution is } L_n &= \left(X - \frac{100 \, p}{r} \right) \left(1 + \frac{r}{100} \right)^n + \frac{100 \, p}{r} \end{split}$$

d After *n* payments, $L_n = 0$, so using part **c**:

$$\left(X - \frac{100\,p}{r}\right) \left(1 + \frac{r}{100}\right)^n + \frac{100\,p}{r} = 0$$

Writing each bracket as a single fraction gives:

$$\left(\frac{Xr - 100\,p}{r}\right) \left(\frac{r + 100}{100}\right)^n + \frac{100\,p}{r} = 0$$

Multiplying through by $r \times 100n$: (Xr - 100 p)(r + 100)^{*n*} + 100^{*n*+1} p = 0

Expanding brackets and collecting terms in *p*: $Xr(r+100)^{n} = p(100(r+100)^{n} - 100^{n+1})$

Finding an expression for p:

$$p = \frac{Xr(r+100)^n}{100(r+100)^n - 100^{n+1}}$$

Dividing top and bottom by $(r+100)^n$ gives:

$$p = \frac{Xr}{100 - 100^{n+1}(r+100)^{-n}}$$
 as required.