Review exercise 2

1

Stage	State	Action	Value
1	G	GT	33*
	Н	HT	25*
	Ι	IT	28*
2	D	DG	32+33=65
		DH	28+25=53*
	Е	EG	34+33=67
		EH	30+25=55
		EI	25+28=53*
	F	FG	31+25=56
		FH	27+28=55*
3	А	AD	33+53=86*
		AE	35+53=88
	В	BD	28+53=81
		BE	23+53=76*
		BF	26+55=81
	С	CE	28+53=81*
		CF	31+55=86
4	S	SA	22+86=108
		SB	31+76=107*
		SC	27+81=108

Shortest route from S to T is SBEIT, length 107

2 a Minimax

2 b

Stage	State	Action	Value
1	D	DT	8*
	Е	ET	10*
	F	FT	6*
2	А	AD	max(7,8)=8*
	А	AE	max(8,10)=10
	В	BE	max(9,10)=10
		BF	max(3,6)=6*
	С	CE	max(6,10)=10
		CF	max(9,6)=9*
3	S	SA	max(9,8)=9
		SB	max(7,6)=7*
		SC	max(6,9)=9

Optimum route is SBFT

- c Minimum required fuel capacity is 7 tonnes
- **d** The aircraft may be required to divert onto a different route for some reason (for example, weather).
- 3 a The route from start to finish in which the arc of minimum length is as large as possible.Example must be practical, involve choice of route, have arc 'costs'.

³ b

r			
Stage	State	Action	Value
1	Н	HK	18*
	Ι	IK	19*
	J	JK	21*
2	F	FH	min(16,18)=16
		FI	min(23,19)=19*
		FJ	min(17,21)=17
	G	GH	min(20,18)=18
		GI	min(15,19)=15
		GJ	min(28,21)=21*
3	В	BG	min(18,21)=18*
	С	CF	min(25,19)=19*
		CG	min(16,21)=16
	D	DF	min(22,19)=19*
		DG	min(19,21)=19*
	Е	EF	min(14,19)=14
4	A	AB	min(24,18)=18
		AC	min(25,19)=19*
		AD	min(27,19)=19*
		AE	min(23,14)=14

c Routes: ACFIK, ADFIK, ADGJK

⁴ a

Stage	State	Action	Value
1	Ι	IT	4.6*
	J	JT	5.2*
2	G	GI	min(5.3,4.6)=4.6*
		GJ	min(4.4,5.2)=5.2
	Н	HI	min(5.1,4.6)=4.6
		HJ	min(4.7,5.2)=4.7*
3	D	DG	min(4.5,4.6)=4.5
		DH	min(4.6,4.7)=4.6*
	Е	EG	min(5.3,4.6)=4.6
		EH	min(5.8,4.7)=4.7*
	F	FG	min(5.1,4.6)=4.6*
		FH	min(4.5,4.7)=4.5
4	А	AD	min(4.2,4.6)=4.2
		AE	min(6.2,4.7)=4.7
	В	BD	min(4.9,4.6)=4.6*
		BE	min(4.5,4.7)=4.5
		BF	min(4.7,4.6)=4.6*
	С	CE	min(4.8,4.7)=4.7*
		CF	min(4.2,4.6)=4.2
5	S	SA	min(6.5,4.7)=4.7*
		SB	min(6.7,4.6)=4.6
		SC	min(5.8,4.7)=4.7*

Optimal routes are SAEHJT and SCEHJT,

- **b** Minimum lane width is 4.7 m
- **c** HJ becomes 6.7 m. SAEHJT now has min width 5.2 m (from JT) and SCEHJT has min width 4.8 m (from CE). So the optimal solution is SAEHJT with min width 5.2 m

Stage	State	Action	Dest	Value
1 (Sept)	2	2	0	200 + 200 = 400*
	1	3	0	200 + 100 = 300*
	0	4	0	200 = 200*
2 (Aug)	2	5	2	200 + 200 + 500 + 400 = 1300
		4	1	200 + 200 + 300 = 700
		3	0	200 + 200 + 200 = 600*
	1	5	1	200 + 100 + 500 + 300 = 1100
		4	0	200 + 100 + 200 = 500*
	0	5	0	200 + 500 + 200 = 900*
3 (July)	2	5	0	200 + 200 + 500 + 900 = 1800*
4 (June)	2	3	2	200 + 200 + 1800 = 2200*
	1	4	2	200 + 100 + 1800 = 2100*
	0	5	2	200 + 500 + 1800 = 2500*
5(May)	0	5	2	200 + 500 + 2200 = 2900
		4	1	200 + 2100 = 2300*
		3	0	200 + 2500 = 2700

5	e.g.
---	------

Month	May	June	July	August	September
Production schedule	4	4	5	5	4

Cost: £2300

6 a Total cost = $2 \times 40 + 350 + 200 = \text{\pounds}630$

D

Stage	Demand	State	Action	Destination	Value
(2) Oct	(5)	(1)	(4)	(0)	$(590 + 200 = 790)^*$
		(2)	(3)	(0)	$280 + 200 = 480^*$
			(4)	(1)	630 + 240 = 870
		(3)	(2)	0	320 + 200 = 520*
			3	1	320 + 240 = 560
			4	2	670 + 80 = 750
3 Sept	3	0	4	1	550 + 790 = 1340*
		1	3	1	240 + 790 = 1030*
			4	2	590 + 480 = 1070
4 Aug	3	0	3	0	200 + 1340 = 1540*
			4	1	550 + 1030 = 1580

Month	August	September	October	November
Make	3	4	4	2

Cost: £1540

6 c Profit per cycle = 13×1400 cost of Kris' time = £2000 = 18 200 cost of production = £1540 ∴ total profit = 18 200 - 3540

total profit = $18\ 200 - 354$ = £14 660

7 a Stage – Number of weeks to finishState – Show being attended

Action - Next journey to undertake

)			
Stage	State	Action	Value
1	F	F – Home	500 - 80 = 420*
	G	G – Home	700 - 90 = 610*
	Н	H – Home	600 - 70 = 530*
2	D	DF	1500 - 200 + 420 = 1720
		DG	1500 - 160 + 610 = 1950*
		DH	1500 - 120 + 530 = 1910
	Е	EF	1300 - 170 + 420 = 1550
		EG	1300 - 100 + 610 = 1810*
		EH	1300 - 110 + 530 = 1720
3	А	AD	900 - 180 + 1950 = 2670*
		AE	900 - 150 + 1810 = 2560
	В	BD	800 - 140 + 1950 = 2610*
		BE	800 - 120 + 1810 = 2490
	С	CD	1000 - 200 + 1950 = 2750*
		CE	1000 - 210 + 1810 = 2600
4	Home	Home – A	-70 + 2670 = 2600*
		Home – B	-80 + 2610 = 2530
		Home – C	-150 + 2750 = 2600*

c

Home C D G

Total profit: £2600

umber of weeks to finish

© Pearson Education Ltd 2018. Copying permitted for purchasing institution only. This material is not copyright free.

- 8 a In a play-safe strategy, each player looks for the worst that could happen for each choice they can make and chooses the option with the least worst option.
 - b

	B plays 1	B plays 2	B plays 3	B s plays 4		row min
A plays 1		+ -	5	-2	4	-5
A plays 2	-1	l	1	-1	2	-1
A plays 3	()	5	-2	-4	-4
A plays 4	-1	l	3	-1	1	-1
col max	()	5	-1	4	

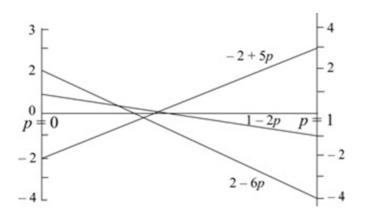
The play safe strategies are: A plays 2 or 4 and B plays 3. The payoff for A is -1.

- **c** The row maximin is equal to the col minimax so there is a stable point and therefore a stable solution.
- **d** Value of game to B is -(-1) = 1
- 9 a In a zero-sum game, the winnings of one player are equal to the loss of the other.

b Col max
$$\begin{pmatrix} -4 & -1 & 3 \\ 2 & 1 & -2 \end{pmatrix}$$
 row min
 $-4 \leftarrow \max$
 -2
 $2 \ 1 \ 3$
 \uparrow
min
 $-2 \neq 1 \therefore$ not stable

9 c Let Emma play R_1 with probability p

If Freddie plays C₁ Emma's winnings are -4p+2(1-p)=2-6pIf Freddie plays C₂ Emma's winnings are -p+1(1-p)=1-2pIf Freddie plays C₃ Emma's winnings are 3p-2(1-p)=-2+5p



need intersection of 2-6p and -2+5p

$$2-6p = -2+5p$$
$$4 = 11p$$
$$p = \frac{4}{11}$$

So Emma should play R₁ with probability $\frac{4}{11}$ R₂ with probability $\frac{7}{11}$ The value of the game is $\frac{-2}{11}$ to Emma

- **d** Value to Freddie $\frac{2}{11}$, matrix $\begin{pmatrix} 4 & -2 \\ 1 & -1 \\ -3 & 2 \end{pmatrix}$
- **10 a** A saddle is the smallest entry in the row and the largest entry in the column. 5 is not the smallest in the row.
 - **b** The col minimax is 3 and the row maximin is 0 so there is no saddle and no stable solution.

10 c i Let B play 1 with probability p and 2 with probability 1-pFor A, 3 dominates 4, so remove row 4 If A plays 1, B's expected winnings are -5p + 2(1-p) = 2-7pIf A plays 2, B's expected winnings are 2p - 3(1 - p) = -3 + 5pIf A plays 3, B's expected winnings are -4pThe optimal solution is the intersection of -3+5p and -4p-3 + 5p = -4p, 9p = 3 $p = \frac{1}{3}$ B should play 1 with probability $\frac{1}{3}$ B should play 2 with probability $\frac{2}{3}$ ii the value to A is $4p = \frac{4}{3}$ 2 A plays 1 1 0 A plays 3 -1-2-3 A plays 2 -4 -5 p = 1p = 011 a

	B plays 4	B plays 5
A plays 4	-16	20
A plays 5	20	-25

11 b The col minimax is 20 and the row maximin is -16 so there is no saddle and therefore no stable solution.

Let A play 4 with probability p and 5 with probability 1 - pIf B plays 4, A's expected winnings are -16p + 20(1 - p) = 20 - 36pIf B plays 4, A's expected winnings are 20p - 25(1 - p) = -25 + 45pThe optimal solution is the intersection of 20 - 36p and -25 + 45p -20 + 36p = -25 + 45p, 45 = 81p $p = \frac{5}{9}$ Amir should play 4 with probability $\frac{5}{9}$

- and 5 with probability $\frac{4}{9}$
- **c** The value of the game to Amir is 20 36p = 0.
- **12 a** Row 1 dominates row 2 so A will never choose R2

Column 1 dominates column 3 so B will never choose C3 Thus Row 2 and column 3 may be deleted.

b Let A play row 1 with probability p and hence row 2 with probability (1-p)If B plays 1 A's expected gain is 3p+6(1-p)=6-3pIf B plays 2 A's expected gain is 5p+3(1-p)=2p+3

Optimal when
$$6-3p = 2p+3$$

 $5p = 3$
 $p = \frac{3}{5}$

Hence A should play row 1 with probability $\frac{3}{5}$ and row 3 with probability $\frac{2}{5}$ and row 2 never Similarly, let B play column 1 with probability q $3q+5(1-q) = 6q+3(1-q) \Rightarrow 5-2q = 3q+3$ 5q = 2 $q = \frac{2}{5}$ So B should play column 1 with probability $\frac{2}{5}$ and column 2 with probability $\frac{3}{5}$ and column 3 never

Value of game is $4\frac{1}{5}$ to A.

13 a Player A: Row minima are -1, 0, -3 so maximin choice is play 2Player B: column maxima are 2, 3, 3 so minimax choice is play 1

b Since A's maximin $(0) \neq$ B's minimax (2) no stable solution

- **13 c** For player A row 2 dominates row 3, (so A will never play 3), since 1 > 0 3 > 1 0 > -3
 - d Let A play 1 with probability p and 2 with probability 1 pIf B plays 1, A's expected winnings are 2p + (1 - p) = 1 + pIf B plays 2, A's expected winnings are -p + 3(1 - p) = 3 - 4pIf B plays 3, A's expected winnings are 3pThe optimal solution is the intersection of 3p and 3 - 4p 3p = 3 - 4p, 7p = 3 $p = \frac{3}{7}$ A should play 1 with probability $\frac{3}{7}$ and should play 2 with probability $\frac{4}{7}$

the value of A is $3p = \frac{9}{7}$

- 14 a In a pure strategy, a player always makes the same choice. In a mixed strategy, each action is played with a determined probability (but at least two options have non-zero probability!)
 - **b** For player B, 3 dominates 1. For player A, no row dominates another.
 - c Col minimax is 1, row maximin is -1 so there is no saddle and no stable solution

14 d Let B play 2 with probability p and 3 with probability 1-pIf A plays 1, B's expected winnings are -p + (1-p) = 1 - 2pIf A plays 2, B's expected winnings are 3p - 2(1 - p) = -2 + 5pIf A plays 3, B's expected winnings are pThe optimal solution is the intersection of 1-2p and -2+5p1 - 2p = -2 + 5p, 3 = 7p $p = \frac{3}{7}$ 3 A plays 2 2 1 A plays 3 0 $^{-1}$ A plays 1 -2 p = 1p = 0B should play 2 with probability $\frac{3}{7}$ and should play 3 with probability $\frac{4}{7}$ the value to B is $1 - 2p = \frac{1}{7}$

15 a

	A(I)	A(II)
B(I)	3	-4
B(II)	-2	1
B(III)	-5	4

	A(I)	A(II)
B(I)	9	2
B(II)	4	7
B(III)	1	10

Let q_1 be the probability that B plays row 1

Let q_2 be the probability that B plays row 2

Let q_3 be the probability that B plays row 3

Let value of the game be v and let V = v + 6

where $q_1, q_2, q_3 \ge 0$

e.g. maximise
$$P = V$$

Subject to $V - 9q_1 - 4q_2 - q_3 + r = 0$
 $V - 2q_1 - 7q_2 - 10q_3 + s = 0$
 $q_1 + q_2 + q_3 + t = 1$

- **16 a** Row minimums (-2, -1, -4, -2) row maximin = -1Column maximums (1, 3, 3, 3) column minimax = 1 Since $1 \neq -1$ not stable
 - **b** Row 2 dominates Row 3 column 1 dominates column 4
 - **c** Let A play row R, with probability P_1 , R_2 with probability P_2 and " R_3 " with probability P_3

 $\begin{pmatrix} -2 & 1 & 3 \\ -1 & 3 & 2 \\ 1 & -2 & -1 \end{pmatrix} \stackrel{\text{e.g.}}{\to} \begin{pmatrix} 1 & 4 & 6 \\ 2 & 6 & 5 \\ 4 & 1 & 2 \end{pmatrix}$ e.g. maximise P = Vsubject to $V - P_1 - 2P_2 - 4P_3 \leq 0$ $V - 4P_1 - 6P_2 - P_3 \leq 0$ $V - 6P_1 - 5P_2 - 2P_3 \leq 0$ $P_1 + P_2 + P_3 \leq 1$ $V_1 P_1 P_2 P_3 \geq 0$ 17 a A zero-sum game is one in which the sum of the gains for all players is zero.

1.	
n	

Γ		Ι	II	III	
	Ι	5	2	3	min 2
ſ	II	3	5	4	$\min 3 \leftarrow \max$
Γ		max 5	5	4	
ſ				\uparrow	
				min	

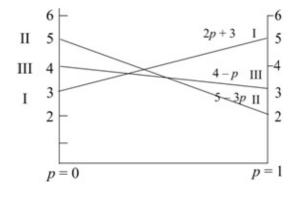
Since $3 \neq 4$ not stable

c Let A play I with probability pLet A play II with probability (1 - p)

If B play I A's gains are 5p+3(1-p)=2p+3

If B plays II A's gains are 2p+5(1-p)=5-3p

If B plays III A's gains are 3p+4(1-p)=4-p



Intersection of 2p+3 and $4-p \Rightarrow p = \frac{1}{3}$ \therefore A should play I $\frac{1}{3}$ of time and II $\frac{2}{3}$ of time; value (to A) = $3\frac{2}{3}$

d Let B play I with probability q_1 , II with probability q_2 and III with probability q_3

	-5	-3		1	3]	
e.g.	-2	-5	\rightarrow	4	1	
	3	_4_		3	2	

maximise P = V

$$V-q_1-4q_2-3q_3\leqslant 0$$

Subject to $V - 3q_1 - q_2 - 2q_3 \le 0$ $q_1 + q_2 + q_3 \le 1$ $V, q_1, q_2, q_3 \ge 0$ or = 1

15

18 a $u_n = 4u_{n-1} + 1, \ n \ge 1$

associated homogeneous recurrence $u_n = 4u_{n-1}$ has complementary function $u_n = c \times 4^n$ particular solution has the form $u_n = \lambda$

$$\lambda = 4\lambda + 1, \ \lambda = -\frac{1}{3}$$
$$u_n = c \times 4^n - \frac{1}{3}$$
$$\mathbf{b} \quad u_0 = 7 = c - \frac{1}{3} \text{ so } u_n = \frac{22}{3} \times 4^n - \frac{1}{3}$$

- **19 a** For p_n , we need to add n to p_{n-1} for the top left side, then n-1 to complete the top right side and finally n-1 to finish the pentagon so $p_5 = 22 + 5 + 4 + 4 = 35$, $p_6 = 51$
 - **b** $p_n = p_{n-1} + n + (n-1) + (n-1)$ = $p_{n-1} + 3n - 2$
 - **c** $p_n = p_{n-1} + 3n 2$

associated homogeneous recurrence $u_n = u_{n-1}$ has complementary function $u_n = c \times 1^n = c$ particular solution has the form $u_n = \lambda n^2 + \mu n$ $\lambda n^2 + \mu n = \lambda (n-1)^2 + \mu (n-1) + 3n - 2$ $0 = -2\lambda n + \lambda + \mu + 3n - 2$ coefficient of $n: 0 = -2\lambda + 3$, $\lambda = \frac{3}{2}$ constant term: $0 = \lambda + \mu - 2$, $\mu = -\frac{1}{2}$ $p_n = c + \frac{3}{2}n^2 - \frac{1}{2}n$ $p_1 = c + \frac{3}{2} - \frac{1}{2} = 1$, c = 0 $p_n = \frac{3}{2}n^2 - \frac{1}{2}n$

d $p_{100} = \frac{1}{2}(30000 - 100) = 14950$

20 $u_n = 2u_{n-1} + 3n + 1$

associated homogeneous recurrence $u_n = 2u_{n-1}$ has complementary function $u_n = c \times 2^n$ particular solution has the form $u_n = \lambda n + \mu$ $\lambda n + \mu = 2\lambda(n-1) + 2\mu + 3n + 1$ coefficient of $n: \lambda = 2\lambda + 3, \lambda = -3$ constant term: $\mu = -2\lambda + 2\mu + 1, \mu = -7$ $u_n = c \times 2^n - 3n - 7$ $u_0 = 11 = c - 7$ so $u_n = 18 \times 2^n - 3n - 7 = 9 \times 2^{n+1} - 3n - 7$

21 a
$$u_{n+1} - 3u_n = 10, u_1 = 7$$

 $u_{n+1} = 3u_n + 10$
 $u_2 = 21 + 10 = 31$
 $u_3 = 93 + 10 = 103$

b i $u_{n+1} = 3u_n + 10$ associated homogeneous recurrence $u_n = 3u_{n-1}$ has complementary function $u_n = c \times 3^n$ particular solution has the form $u_n = \lambda$ $\lambda = 3\lambda + 10, \ \lambda = -5$ $u_n = c \times 3^n - 5$ $u_1 = 3c - 5 = 7, \ c = 4$ $u_n = 4 \times 3^n - 5$

ii
$$u_n = 4 \times 3^n - 5 \le 1000\,000$$

 $n \log 3 \le \log \frac{1000\,005}{4}$
 $n \le \log \frac{1\,000\,005}{4} / \log 3 = 11.31 \,(2 \text{ d.p.})$
 $n = 12$ is the smallest integer

22 a
$$u_n = (0.8)^4 u_{n-1} + 100$$
 $u_1 = 100 \text{ (or } u_0 = 0)$

b
$$u_n = 0.4096u_{n-1} + 100$$

complementary function $u_n = c \times 0.4096^n$
particular solution has the form $u_n = \lambda$
 $\lambda = 0.4096\lambda + 100, \ \lambda = \frac{100}{0.5904} = 169.38 \ (2 \text{ d.p.})$
 $u_n = c \times 0.4096^n + 169.38 = 169.38 \ (d \times 0.4096^n + 1)$
 $u_1 = 100 = 169.38(1 + 0.4096d)$
 $0.5094 = 1 + 0.4096d, \ d = -1$
 $u_n = 169.38(1 - 0.4096^n) = 169.38(1 - 0.8^{4n})$

22 c $u_n = 169.38(1 - 0.4096^n) = 169.38(1 - 0.8^{4n})$ $u_n \le 160$ $9.38 \ge 169.38 \times 0.8^{4n}$ $0.8^{4n} \le 0.05536$ $4n \log 0.8 \le \log 0.05536$ $n \le \frac{\log 0.05536}{4 \log 0.8} = 3.24$

the drug exceeds 160 mg on the 4th dose so 3 doses are the maximum

23 a
$$u_{n+2} = 4u_{n+1} + 5u_n$$

let $u_n = Ar^n$
then $r^2 = 4r + 5$
 $r^2 - 4r - 5 = (r - 5)(r + 1) = 0$
general solution is $u_n = A \times 5^n + B \times (-1)^n$

b
$$u_0 = 8, u_1 = -20$$

 $u_0 = 8 = A + B$
 $u_1 = -20 = 5A - B$
 $A = -2, B = 10$
 $u_n = -2 \times 5^n + 10(-1)^n$

]

- **24 a** $3u_{n+2} + 10u_{n+1} 8u_n = 20$ $u_n = k$ is a particular solution 3k + 10k - 8k = 20, k = 4
 - **b** Associated homogenous recurrence relation $3u_{n+2} + 10u_{n+1} - 8u_n = 0$ let $u_n = Ar^n$ then $3r^2 + 10r - 8 = (3r - 2)(r + 4) = 0$ general solution is $u_n = A\left(\frac{2}{3}\right)^n + B(-4)^n + 4$ $u_0 = A + B + 4 = 4A + 4B + 16 = 0$ $u_1 = \frac{2}{3}A - 4B + 4 = 1$ $\frac{14}{3}A + 20 = 1, A = -\frac{57}{14}, B = \frac{1}{14}$ $u_n = -\frac{57}{14}\left(\frac{2}{3}\right)^n + \frac{1}{14}(-4)^n + 4$
- 25 a There are two ways to make a row of length n + 2 add a horizontal domino (length 2) to a row of length n or add a vertical domino (length 1) to a row of length n + 1. There is 1 way to get a row of length 1 (1 vertical domino) and 2 ways to get a row of length 2 (1 horizontal or 2 vertical).

25 b $x_{n+2} = x_{n+1} + x_n, x_1 = 1, x_2 = 2$ $x_3 = x_2 + x_1 = 3, x_4 = 5$ $x_5 = 8, x_6 = 13, x_7 = 21, x_8 = 34$

c i
$$x_{n+2} = x_{n+1} + x_n$$

let $x_n = Ar^n$
then $r^2 = r+1$
 $r^2 - r - 1 = 0$, $\left(r - \frac{1}{2}\right)^2 = \frac{5}{4}$
 $r = \frac{1 \pm \sqrt{5}}{2}$
general solution is $r_n = A \left(\frac{1 + \sqrt{5}}{2}\right)^n + P \left(\frac{1 + \sqrt{5}}{2}\right)^n$

general solution is $x_n = A\left(\frac{1+\sqrt{5}}{2}\right)^n + B\left(\frac{1-\sqrt{5}}{2}\right)^n$

$$\begin{aligned} x_1 &= 1 = A\left(\frac{1+\sqrt{5}}{2}\right) + B\left(\frac{1-\sqrt{5}}{2}\right) \\ x_2 &= 2 = A\left(\frac{1+\sqrt{5}}{2}\right)^2 + B\left(\frac{1-\sqrt{5}}{2}\right)^2 \\ &= A\left(\frac{3+\sqrt{5}}{2}\right) + B\left(\frac{3-\sqrt{5}}{2}\right) \\ A &= \frac{5+\sqrt{5}}{10}, \ B = \frac{5-\sqrt{5}}{10} \\ x_n &= \left(\frac{5+\sqrt{5}}{10}\right) \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{5-\sqrt{5}}{10}\right) \left(\frac{1-\sqrt{5}}{2}\right)^n \end{aligned}$$

ii 2 feet is 24 inches

$$x_{24} = \left(\frac{5+\sqrt{5}}{10}\right) \left(\frac{1+\sqrt{5}}{2}\right)^{24} + \left(\frac{5-\sqrt{5}}{10}\right) \left(\frac{1-\sqrt{5}}{2}\right)^{24} = 75025$$

- 26 a The probability that all 3 dice are the same is
 - $\left(1 \times \frac{1}{6} \times \frac{1}{6}\right) = \frac{1}{36}$ (the first dice can be anything, the second and third dice have to be equal to it)

The probability that 2 of 3 dice are the same is

 $3\left(1 \times \frac{1}{6} \times \frac{5}{6}\right) = \frac{15}{36}$ (the first dice can be anything, the second has to be equal and third dice has

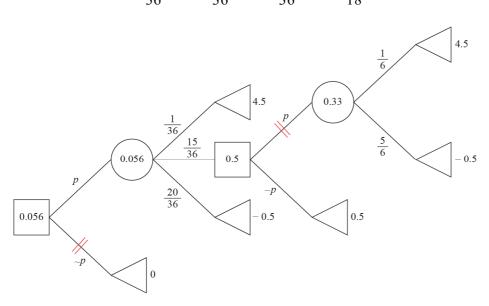
to be different, and there are 3 combinations of dice

order with 2 equal - AAB, ABA and BAA)

EMV calculations:

second choice EMV =
$$\frac{1}{6} \times 4.5 - \frac{5}{6} \times 0.5 = \frac{1}{3}$$

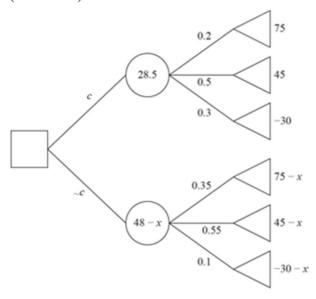
first choice EMV = $\frac{1}{36} \times 4.5 + \frac{15}{36} \times 0.5 - \frac{20}{36} \times 0.5 = \frac{1}{18}$



b EMV = 5.6p - play the game but don't continue if only two dice are equal

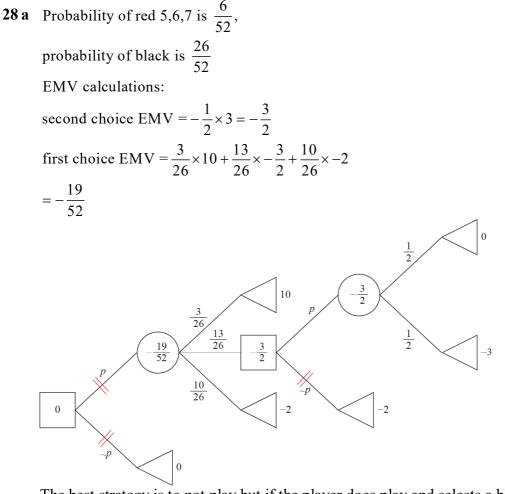
27 a EMV calculations: top EMV = $0.2 \times 75 + 0.5 \times 45 - 0.3 \times 30 = 28.5$

bottom EMV =0.35(75 - x) + 0.55(45 - x)+0.1(-30 - x) = 48 - xEMV is max(48 - x, 28.5) hire if $x \le 48 - 28.5 = 19.5$ (in £1000s)



b, c

EMV calculations: top EMV = $0.2 \times 75 + 0.5 \times 45 - 0.3 \times 30 = 28.5$ bottom EMV =0.35(75 - x) + 0.55(45 - x)+0.1(-30 - x) = 48 - xEMV is max(48 - x, 28.5) hire if $x \le 48 - 28.5 = 19.5$ (in £1000s)



The best strategy is to not play but if the player does play and selects a black card, then they should continue

b The best strategy is to not play but if the player does play and selects a black card, then they should continue. The EMV of playing the game is $-\frac{19}{52}$.

29 For simplicity, the tree has been collapsed slightly – each branch should have a further branch (only one has been shown)

EMV calculations:

furthest left EMV = $0.7 \times 5 + 0.2 \times 4 + 0.1 \times 3 = 4.6$

first date EMV = $0.5 \times 4.6 + 0.3 \times 4.14$

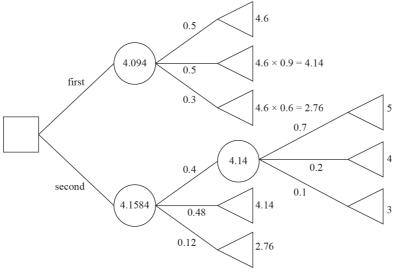
 $+0.2 \times 2.76 = 4.094$

second date EMV = $0.4 \times 4.6 + 0.48 \times 4.14$

 $+0.12 \times 2.76 = 4.1584$

choose the second saturday

(in £1000s)

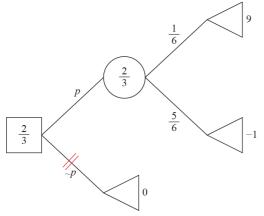


30 a There are 6 possibilities for scoring 10 or more: (4,6),(5,5),(5,6),(6,4),(6,5),(6,6)

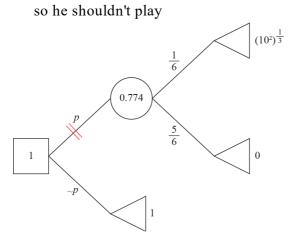
so the probability of winning is $\frac{1}{6}$

 $EMV = \frac{1}{6} \times 9 - \frac{5}{6} \times 1 = \frac{2}{3}$

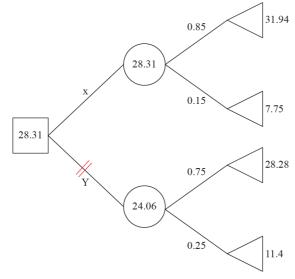
so he should play



30 b play and win: $E(U) = \sqrt[3]{10^2} = 4.641$ play and lose: $E(U) = \sqrt[3]{0^2} = 0$ play: $E(U) = \frac{1}{6}\sqrt[3]{10^2} = 0.774$ don't play: $E(U) = \sqrt[3]{1^2} = 1$



31 a



b X: $E(U) = 0.85\sqrt{1020} + 0.15\sqrt{60} = 28.31$ Y: $E(U) = 0.75\sqrt{800} + 0.25\sqrt{130} = 24.06$ so X is the better option, the expected profit is $(0.85 \times 720 - 0.15 \times 240) \times \pounds1000 = \pounds576\,000$

- **1** a There are 4 options at each vertex so 4^n options for a walk of length *n*
 - **b** A close walk of length n from A is any walk of length n 1 that doesn't end at A, plus a final walk from the penultimate vertex to A. So,

$$u_n = 4^{n-1} - u_{n-1}$$

 $\mathbf{c} \quad u_n + u_{n-1} = 4^{n-1}$

complementary function $u_n = c(-1)^n$

particular solution has the form $u_n = \lambda 4^n$

$$\lambda 4^{n} + \lambda 4^{n-1} = 4^{n-1}, \ 5\lambda = 1$$

 $\mu = c(-1)^{n} + \frac{1}{2}4^{n}$

$$u_n = c(1) + 5$$

 $u_2 = 4$ (ABA, ACA, ADA and AEA)
 $16 - 4$

$$u_{2} = 4 = c + \frac{1}{5}, \ c = \frac{1}{5}$$
$$u_{n} = \frac{4(-1)^{n} + 4^{n}}{5}$$

d Similarly, the number of walks of length n - 1 on K_p is $(p-1)^{n-1}$ and a closed walk of length n from the first vertex A is $u_n = (p-1)^{n-1} - u_{n-1}$ complementary function $u_n = c(-1)^n$ particular solution has the form $u_n = \lambda(p-1)^n$ $\lambda(p-1)^n + \lambda(p-1)^{n-1} = (p-1)^{n-1}, p\lambda = 1$ $u_n = c(-1)^n + \frac{1}{p}(p-1)^n$ $u_2 = p - 1 = c + \frac{1}{p}(p-1)^2, c = \frac{1}{p}(p-1)$ $u_n = \frac{(p-1)(-1)^n + (p-1)^n}{p}$

There are *p* starting vertices so the total number of closed walks of length *n* is $pu_n = (p-1)(-1)^n + (p-1)^n$

2 a Let A play 1 with probability p and 2 with probability $\frac{1}{3}$ - p and 3 with probability $\frac{2}{3}$

If B plays 1, A's expected winnings are

$$2p + 3\left(\frac{1}{3} - p\right) + \frac{2}{3} = \frac{5}{3} - p$$

If B plays 2, A's expected winnings are

$$p-2\left(\frac{1}{3}-p\right)+\frac{4}{3}=\frac{2}{3}+3p$$

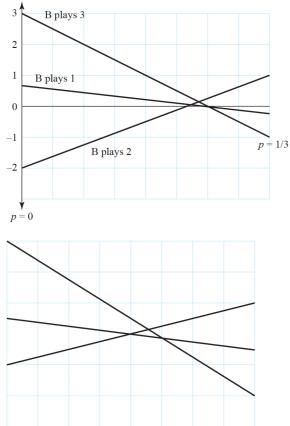
If B plays 3, A's expected winnings are

$$-p + 5\left(\frac{1}{3} - p\right) + \frac{4}{3} = 3 - 6p$$

The optimal solution (see the zoomed in diagram) is the intersection

of
$$\frac{5}{3} - p$$
 and $\frac{2}{3} + 3p$
 $\frac{5}{3} - p = \frac{2}{3} + 3p$, $1 = 4p$
 $p = \frac{1}{4}$

A plays 1 with probability $\frac{1}{4}$ and 2 with probability $\frac{1}{12}$ and 3 with probability $\frac{2}{3}$



2 b We need to turn this problem into a linear programming problem that we can solve using the simplex algorithm.

Let B play 1 with probability p_1 and 2 with probability p_2 and 3 with probability p_3 Convert the table to B's point of view by transposing the matrix and changing signs and add 6 to each entry so all are strictly positive.

	B plays 1	B plays 2	B plays 3
A plays 1	2	1	-1
A plays 2	3	-2	5
A plays 3	1	2	2

	A plays	1 A plays 2	A plays 3
B plays 1	-2	-3	-1
B plays 2	-1	2	-2
B plays 3	1	-5	-2

	A plays	A plays 2	A plays 3
B plays 1	4	3	5
B plays 2	5	8	4
B plays 3	7	1	4

In this transformed game, if A plays 1, B's expected winnings are

 $4p_1 + 5p_2 + 7p_3$ If A plays 2, B's expected winnings are $3p_1 + 8p_2 + p_3$ If A plays 3, B's expected winnings are

 $5p_1 + 4p_2 + 4p_3$

27

Challenge

2 b (continued)

The additional constraint that B's expected losses are minimised when A plays 1 gives

 $\begin{array}{l} 4p_{1}+5p_{2}+7p_{3} \geqslant 3p_{1}+8p_{2}+p_{3}\\ 4p_{1}+5p_{2}+7p_{3} \geqslant 5p_{1}+4p_{2}+4p_{3}\\ \end{array}$ The linear programming problem is max P=-V subject to $V-4p_{1}-5p_{2}-7p_{3}+r=0\\ V-3p_{1}-8p_{2}-p_{3}+s=0\\ V-5p_{1}-4p_{2}-4p_{3}+t=0\\ -p_{1}+3p_{2}-6p_{3}+u=0\\ p_{1}-p_{2}-3p_{3}+v=0\\ p_{1}+p_{2}+p_{3}+w=1\\ V,p_{1},p_{2},p_{3},r,s,t,u,v,w \geqslant 0 \end{array}$

The simplex tableaus for this are given below

bv	V	p1	p2	p3	r	s	t	u	v	W	value	row op
r	1	-4	-5	-7	1	0	0	0	0	0	0	
s	1	-3	-8	-1	0	1	0	0	0	0	0	
t	1	-5	-4	-4	0	0	1	0	0	0	0	
u	0	-1	3	-6	0	0	0	1	0	0	0	
v	0	1	-1	-3	0	0	0	0	1	0	0	
w	0	1	1	1	0	0	0	0	0	1	1	
Р	-1	0	0	0	0	0	0	0	0	0	0	

bv	V	p1	p2	p3	r	S	t	u	V	W	value	row op
V	1	-4	-5	-7	1	0	0	0	0	0	0	R1
S	0	1	-3	6	1	1	0	0	0	0	0	R2-R1
t	0	-1	1	3	1	0	1	0	0	0	0	R3-R1
u	0	-1	3	-6	0	0	0	1	0	0	0	R4
v	0	1	-1	-3	0	0	0	0	1	0	0	R5
w	0	1	1	1	0	0	0	0	0	1	1	R5
Р	0	-4	-5	-7	1	0	0	0	0	0	0	R6+R1

2 b (continued)

bv	V	p1	p2	p3	r	S	t	u	v	w	value	row op
V	1	$-\frac{19}{3}$	$-\frac{8}{3}$	0	1	0	0	0	$-\frac{7}{3}$	0	0	R1-7/3R5
s	0	3	-5	0	1	1	0	0	2	0	0	R2+2R5
t	0	0	0	0	1	0	1	0	1	0	0	R3+R5
u	0	-3	5	0	0	0	0	1	-2	0	0	R4-2R5
р3	0	$-\frac{1}{3}$	$\frac{1}{3}$	1	0	0	0	0	$-\frac{1}{3}$	0	0	-1/3R5
w	0	$\frac{4}{3}$	$\frac{2}{3}$	0	0	0	0	0	$\frac{1}{3}$	1	1	R6+1/3R5
Р	0	$-\frac{19}{3}$	$-\frac{8}{3}$	0	1	0	0	0	$-\frac{7}{3}$	0	0	R1-7/3R5

bv	V	pl	p2	p3	r	S	t	u	v	W	value	row op
V	1	0	$-\frac{119}{9}$	0	$\frac{28}{9}$	<u>19</u> 9	0	0	$\frac{17}{9}$	0	0	R1+19/9R2
p1	0	1	$-\frac{5}{3}$	0	$\frac{1}{3}$	$\frac{1}{3}$	0	0	$\frac{2}{3}$	0	0	1/3R2
t	0	0	0	0	1	0	1	0	1	0	0	R3
u	0	0	0	0	1	1	0	1	0	0	0	R4+R2
p3	0	0	$-\frac{2}{9}$	1	$\frac{1}{9}$	$\frac{1}{9}$	0	0	$-\frac{1}{9}$	0	0	R5+1/9R2
w	0	0	$\frac{26}{9}$	0	$-\frac{4}{9}$	$-\frac{4}{9}$	0	0	$-\frac{2}{9}$	1	1	R6-4/9R2
Р	0	0	- <u>119</u> 9	0	$\frac{28}{9}$	<u>19</u> 9	0	0	$\frac{17}{9}$	0	0	R7+19/9R2

2 b (continued)

bv	V	p1	p2	p3	r	S	t	u	v	W	value	row op
V	1	0	0	0	$\frac{14}{13}$	$\frac{1}{13}$	0	0	<u>34</u> 13	0	$\frac{119}{26}$	R1+119/26R6
pl	0	1	0	0	$\frac{1}{13}$	$\frac{1}{13}$	0	0	$\frac{7}{13}$	0	$\frac{15}{26}$	R2+15/26R6
t	0	0	0	0	1	0	1	0	1	0	0	R3
u	0	0	0	0	1	1	0	1	0	0	0	R4
р3	0	0	0	1	$\frac{1}{13}$	$\frac{1}{13}$	0	0	$-\frac{5}{39}$	0	$\frac{1}{13}$	R5+2/16R6
p2	0	0	1	0	$-\frac{2}{13}$	$-\frac{2}{13}$	0	0	$-\frac{1}{13}$	$\frac{9}{26}$	$\frac{9}{26}$	9/26R6
Р	0	0	0	0	$\frac{14}{13}$	$\frac{1}{13}$	0	0	<u>34</u> 13	0	$\frac{119}{26}$	R1+51/8R3

Thus, we see that B should play 1 with probability $\frac{15}{26}$, 2 with probability $\frac{9}{26}$ and 3 with probability $\frac{1}{13}$.

