Momentum and impulse 1B

1 Conservation of momentum (\rightarrow)

$$(2 \times 4) + (1 \times 0) = (2 \times 2) + (1 \times v)$$

 $8 = 4 + v$
 $4 = v$

$$\begin{array}{c}
4 \\
P \\
2 \text{ kg}
\end{array}$$

The speed of Q after the collision is 4 m s⁻¹

2 Conservation of momentum (\rightarrow)

$$(4 \times 25) + (20 \times 0) = 45v$$
$$100 = 45v$$
$$\frac{20}{9} = v$$

The common speed of the trucks is $\frac{20}{9}$ m s⁻¹

3 Conservation of momentum (\rightarrow)

$$(0.5\times5) + (0.2\times2) = (0.5\times4) + (0.2\times\nu)$$

$$2.5 + 0.4 = 2.0 + 0.2\nu$$

$$0.9 = 0.2\nu$$

$$4.5 = \nu$$

The speed of B after the collision is 4.5 m s⁻¹

4 a Conservation of momentum (\rightarrow)

$$(2 \times 4) + (1 \times 0) = 3v$$
$$8 = 3v$$
$$\frac{8}{3} = v$$

The common speed of the particles after the collision is $\frac{8}{3}$ m s⁻¹

4 b For the 1 kg particle:

$$(\rightarrow)I = 1 \times v = \frac{8}{3}$$

The magnitude of the impulse in the collision is $\frac{8}{3}$ N s

[Alternatively, for the 2 kg particle:

$$(\leftarrow) I = 2(-v - (-4))$$

= $2(-\frac{8}{3} + 4)$
= $2 \times \frac{4}{3} = \frac{8}{3}$]

5 a Conservation of momentum (\rightarrow)

$$(2 \times 6) + (5 \times (-4)) = (2 \times (-1.5)) + 5v$$

$$12 - 20 = -3 + 5v$$

$$-5 = 5v$$

$$v = -1$$

The speed of B is 1 m s⁻¹ and its direction of motion is unchanged by the collision.

b For $A:(\leftarrow)$ I = 2(1.5 - (-6))= 2×7.5 = 15

[or for
$$B: (\rightarrow) I = 5(v - (-4))$$

= $5(-1+4)$
= 15]

The magnitude of the impulse given to *B* is 15 N s

6 Conservation of momentum (\rightarrow)

$$100u + (150 \times 0) = 250 \times 4$$
$$100u = 1000$$
$$u = 10$$

 $\begin{array}{c}
u \\
\hline
Q \\
100 \text{ g}
\end{array}$

The value of u is 10.

Conservation of momentum (\rightarrow)

$$(4m \times 2u) + (3m \times (-2u)) = (4m \times 0) + (3m \times v)$$

$$8mu - 6mu = 3mv$$

$$2mu = 3mv$$

$$v = \frac{2u}{3}$$

The velocity of B after the collision is $\frac{2u}{3}$ m s⁻¹ in the opposite direction.

b For
$$A:(\leftarrow) I = 4m(0-(-2u))$$

= $8mu$

The magnitude of the impulse given by A to B is 8mu

[or for B:
$$(\rightarrow)$$
 $I = 3m(v - (-2u))$
= $3m\left(\frac{2u}{3} + 2u\right)$
= $2mu + 6mu = 8mu$]

8 Conservation of momentum (\rightarrow)

$$(150 \times 4) = (100 \times 2u) + (50 \times (-u))$$

$$600 = 200u - 50u$$

$$600 = 150u$$

$$4 = u$$

The larger has speed 8 m s^{-1} and the smaller part has speed 4 m s^{-1}

9 a Conservation of momentum (\rightarrow)

$$(m \times 3u) + (km \times (-u)) = \left(m \times \frac{-3u}{2}\right) + \left(km \times \frac{u}{2}\right)$$

$$3mu - kmu = -\frac{3mu}{2} + \frac{kmu}{2}$$

$$6 - 2k = -3 + k$$

$$3 = k$$

The value of k is 3.

b For
$$P: (\leftarrow) I = m \left(\frac{3u}{2} - (-3u) \right)$$
 [or for $Q: (\rightarrow) I = km \left(\frac{u}{2} - (-u) \right)$

$$= \frac{9mu}{2}$$

$$= \frac{9mu}{2}$$

$$= \frac{9mu}{2}$$

The magnitude of the impulse is $\frac{9mu}{2}$

10 a For
$$B:(\rightarrow)$$

impulse-momentum principle

$$6 = 2(v - 0)$$

$$3 = v$$

The common speed is 3 m s⁻¹

b Conservation of momentum (\rightarrow)

$$4u = 2v + 4v = -6 \times 3 = 18$$

 $u = 4.5$

[or impulse–momentum principle for A:
$$(\rightarrow) - 6 = 4(3 - u)$$

-1.5 = 3 - u

$$u = 4.5$$

$$u = 4.5$$

The value of u is 4.5.

11 a For $P:(\leftarrow)$

impulse-momentum principle

$$9 = 3(-1 - (-u))$$

$$9 = 3(-1+u)$$

$$3 = -1 + u$$

$$4 = u$$

The speed of P before the collision is 4 m s⁻¹ and it was moving in the same direction as it was after the collision.

b For $Q:(\rightarrow)$

impulse-momentum principle

$$9 = 2(1.5 - v)$$

$$9 = 3 - 2v$$

$$2v = -6$$

$$v = -3$$

[or conservation of momentum (\rightarrow)

$$3u + 2v = (3 \times 1) + (2 \times 1.5)$$

$$12 + 2v = 3 + 3 = 6$$

$$2v = -6$$

$$v = -3$$

The speed of Q before the collision was 3 m s⁻¹ and it was moving in the opposite direction to its direction after the collision.

12 a Conservation of momentum (\rightarrow)

$$3mu + 1.5m = (3m \times 2.5) + (m \times 3)$$

$$3mu + 1.5m = 7.5m + 3m$$

$$3u = 9$$

$$u = 3$$

The speed of A before the collision is 3 m s⁻¹

12 b Using the impulse–momentum principle:

for
$$B:(\rightarrow)$$

$$3 = m(3-1.5)$$

$$2 = m$$

[or for
$$A:(\leftarrow)$$

$$3 = 3m(-2.5 - (-u))$$

$$3 = 3m(-2.5 + 3)$$

$$1 = 0.5m$$

$$2 = m$$

The mass of A is 6 kg.

Challenge

$$P: I = \frac{9mu_1}{4}$$
 $Q: I = \frac{3mu_2}{2}$

$$\frac{9mu_1}{4} = \frac{3mu_2}{2}$$
 gives $u_1 = \frac{2u_2}{3}$