Work, energy and power 2A

1 Work done =
$$Fs$$

= 0.6×4.2
= 2.52

The work done is 2.52 J

Work done =
$$Fs$$

 $102 = F \times 12$

$$F = \frac{102}{12} = 8.5$$

The magnitude of the force is 8.5 N

3 Work done against gravity =
$$mgh$$

= $0.35 \times 9.8 \times 7$
= 24.01

The work done against gravity is 24.0 J (3 s.f.)

4 Work done against gravity =
$$mgh$$

= $15 \times 9.8 \times 4$
= 588

The work done against gravity is 588 J

No acceleration, so the force pushing the box has the same magnitude as the resistances.

$$F = 22 \, \text{N}$$

Work done =
$$Fs$$

= 22×15
= 330

The work done by the force pushing the box is 330 J

6 Work done by gravity =
$$mgh$$

= $0.5 \times 9.8 \times 15$
= 73.5

The work done by gravity is 73.5 J

7 Work done = mgh

$$30 \times 1000 = 80 \times 9.8 h$$

$$h = \frac{30000}{80 \times 9.8}$$

$$h = 38.26...$$

The building is 38.3 m high (3 s.f.)

8 a

Work done = horizontal component of force \times distance moved $=18\cos 25^{\circ} \times 14$ =228.38...

The work done is 228 J (3 s.f.)

b One assumption made is that there is no frictional force between the sled and the ice.

This is likely to be a valid assumption, due to the low coefficient of friction between sled and ice.

The parcel moves at a constant speed so

the acceleration is 0 m s⁻²

9

Work done =Ts

$$30 = T \times 4$$

$$T = 7.5$$

Resolving parallel to the plane:

$$T - F = 0$$

$$7.5 - F = 0$$

$$F = 7.5$$

Resolving perpendicular to the plane to find R.

$$R = mg$$

$$R = 3 \times 9.8$$

Friction is limiting:

$$F = \mu R$$

$$7.5 = \mu \times 3 \times 9.8$$

$$\mu = \frac{7.5}{3 \times 9.8} = 0.2551...$$

The coefficient of friction is 0.255 (3 s.f.)

10

$$\mu = 0.55$$

Resolving perpendicular to the plane:

$$R = 2g$$

Friction is limiting:

$$F = \mu R$$

$$F = 0.55 \times 2g$$

Resolving parallel to the plane:

$$T - F = 0$$

$$T = 0.55 \times 2g$$

Work done
$$=Ts$$

$$= 0.55 \times 2g \times (3 \times 2) \blacktriangleleft$$
$$= 0.55 \times 2 \times 9.8 \times 6$$

= 64.68

The work done is 64.7 J (3 s.f.)

11 Work done against gravity = mgh

$$=52\times9.8\times46$$

$$= 23441.6$$

The work done against gravity is 23 400 J (3 s.f.)

12

Work done by gravity = mgh

$$=25\times9.8\times(2\sin35^\circ)$$

$$= 281.0...$$

The work done by gravity is 281 J (3 s.f.)

Distance moved = speed \times time

Work done against gravity = mgh

$$=0.3\times9.8\times(2\sin 25^\circ)$$

$$= 2.484...$$

The work done against gravity is 2.48 J (3 s.f.)

14

$$\mu = 0.3$$

a Resolving perpendicular to the plane:

$$R = 8g\cos\alpha$$

$$=8g\times\frac{12}{13}$$

Friction is limiting:

$$F = \mu R$$

$$F = 0.3 \times 8 \times 9.8 \times \frac{12}{13}$$

$$=21.71...$$

The frictional force has magnitude 21.7 N (3 s.f.)

b Work done against friction = Fs

$$=21.71...\times15$$

The work done against friction is 326 J (3 s.f.)

c Work done against gravity = mgh

$$= 8 \times 9.8 \times (15 \sin \alpha)$$

$$=8\times9.8\times\left(15\times\frac{5}{13}\right)$$

$$=452.3...$$

The work done against gravity is 452 J (3 s.f.)

Draw a small right-angled triangle to show information about α . Use exact values for $\sin \alpha$ and $\cos \alpha$.

15

Resolving perpendicular to the plane:

$$R = 0.5g\cos\theta$$

$$=0.5g\times\frac{24}{25}$$

Resolving parallel to the plane:

$$T = F + 0.5g \sin \theta$$

Friction is limiting:

$$F = \mu R$$

$$F = \mu \times 0.5g \times \frac{24}{25}$$

$$T = \mu \times 0.5 \, g \times \frac{24}{25} + 0.5 \, g \times \frac{7}{25}$$

Work done by force = force \times distance moved

$$12 = T \times 3$$

$$T = 4$$

$$\therefore 4 = \mu \times 0.5g \times \frac{24}{25} + 0.5g \times \frac{7}{25}$$

$$\mu = \frac{4 - 0.5 \times 9.8 \times \frac{7}{25}}{0.5 \times 9.8 \times \frac{24}{25}}$$

$$\mu = 0.5586...$$

The coefficient of friction is 0.559 (3 s.f.)

$$\mu = 0.4$$

Resolving perpendicular to the plane:

$$R = 1.5g \cos 40^{\circ}$$

Friction is limiting:

$$F = \mu R$$

$$F = 0.4 \times 1.5g \cos 40^{\circ}$$

Resolving parallel to the plane:

$$T = F + 1.5g \sin 40^{\circ}$$

$$T = 0.4 \times 1.5g \cos 40^{\circ} + 1.5g \sin 40^{\circ}$$

Work done by
$$T = T \times s$$

$$= (0.4 \times 1.5g \cos 40^{\circ} + 1.5g \sin 40^{\circ}) \times 8$$

The work done by T is 112 J (3 s.f.)

17
$$\sin \alpha = \frac{3}{5} \Rightarrow \cos \alpha = \frac{4}{5}$$

Work done = force distance moved in direction of force

a Work done by gravity $E_g = Wh$

Weight,
$$W = mg = 2g$$
, $h = 3\sin\alpha = \frac{9}{5}$ m

$$E_g = 2g \times \frac{9}{5}$$

$$E_g = 2 \times 9.8 \times 1.8 = 35.28$$

The work done by gravity is 35.3 J (3 s.f.)

Normal reaction force, R, can be found by resolving perpendicular to the slope:

$$R = 2g\cos\alpha$$

$$R = \frac{8}{5}g$$

So frictional force,
$$F = \frac{7}{20} \times \frac{8}{5} g = \frac{14}{25} g$$

$$E_F = \frac{14}{25} g \times 3$$

$$E_F = 0.56 \times 9.8 \times 3 = 16.464$$

The work done by gravity is 16.5 J (3 s.f.)

$$35.28 + 16.464 = \left(\frac{1}{2} \times 2u^2\right) - \left(\frac{1}{2} \times 2 \times 0^2\right)$$

$$51.744 = u^2$$

$$u = 7.1933...$$

The particle is projected at a speed of 7.19 ms⁻¹ (3 s.f.)

