Elastic collisions in one dimension 4A

- 1 Use Newton's law of restitution $e = \frac{\text{speed of separation}}{e}$ speed of approach
 - **a** $e = \frac{4-0}{6-0} = \frac{2}{3}$
 - **b** $e = \frac{3-2}{4-2} = \frac{1}{2}$
 - $e = \frac{2 (-3)}{9 (-6)} = \frac{5}{15} = \frac{1}{3}$
- 2 a Using conservation of linear momentum for the system (\rightarrow) :

$$0.25 \times 6 + 0.5 \times 0 = 0.25v_1 + 0.5v_2$$

Multiply this equation by 4:

$$6 = v_1 + 2v_2 \tag{1}$$

Using Newton's law of restitution:

$$\frac{1}{2} = \frac{v_2 - v_1}{6 - 0}$$

$$\Rightarrow 3 = v_2 - v_1$$
(2)

Add equations (1) and (2):

$$9 = 3v_2$$

$$\Rightarrow v =$$

$$\Rightarrow v_2 = 3$$

Substituting this value into equation (1) gives:

$$6 = v_1 + 2 \times 3$$

$$\Rightarrow v_1 = 0$$

After the collision, A is at rest and B moves at $3 \,\mathrm{m \, s}^{-1}$.

2 b Using conservation of linear momentum for the system (\rightarrow) :

$$2 \times 4 + 3 \times 2 = 2v_1 + 3v_2$$

$$\Rightarrow 14 = 2v_1 + 3v_2$$
(1)

Using Newton's law of restitution:

$$0.25 = \frac{v_2 - v_1}{4 - 2}$$

$$\Rightarrow 0.5 = v_2 - v_1$$
(2)

Multiply equation (2) by 2 and add to equation (1):

$$15 = 5v_2$$
$$\Rightarrow v_2 = 3$$

Substituting this value into equation (1) gives:

$$14 = 2v_1 + 3 \times 3$$

$$\Rightarrow v_1 = \frac{5}{2} = 2.5$$

After the collision, A and B move with speeds of $2.5 \,\mathrm{m \, s^{-1}}$ and $3 \,\mathrm{m \, s^{-1}}$ respectively.

c Using conservation of linear momentum for the system (\rightarrow) :

$$3\times8+1\times(-6) = 3\nu_1 + 1\nu_2$$

$$\Rightarrow 18 = 3\nu_1 + \nu_2$$
 (1)

Note that in deriving equation (1) the speed of particle B appears in the equation as -6 because it is directed to the left in the diagram.

Using Newton's law of restitution:

$$\frac{1}{7} = \frac{v_2 - v_1}{8 - (-6)}$$

$$\Rightarrow 2 = v_2 - v_1$$
(2)

Subtracting equation (2) from equation (1) gives:

$$16 = 4v_1$$
$$\Rightarrow v_1 = 4$$

Substituting this value into equation (1) gives:

$$18 = 3 \times 4 + v_2$$

$$\Rightarrow v_2 = 6$$

This answer may be checked by using equation (2).

After the collision, A and B move with speeds of $4 \,\mathrm{ms}^{-1}$ and $6 \,\mathrm{ms}^{-1}$ respectively.

2 d Using conservation of linear momentum for the system (\rightarrow) :

$$0.4 \times 6 + 0.4 \times (-6) = 0.4 v_1 + 0.4 v_2$$

$$\Rightarrow 0 = v_1 + v_2$$
(1)

Using Newton's law of restitution:

$$\frac{2}{3} = \frac{v_2 - v_1}{6 - (-6)} = \frac{v_2 - v_1}{12}$$

$$\Rightarrow v_2 - v_1 = 8$$
(2)

Adding equations (1) and (2) gives:

$$2\nu_2 = 8$$

$$\Rightarrow \nu_2 = 4$$

Substituting this value into equation (1) gives:

$$v_1 = -4$$

After the collision, the speeds of A and B are $4 \,\mathrm{m\,s^{-1}}$, and both particles change direction.

e Noting that the particle moving in the opposite direction (i.e. to the left) has a negative velocity in the equation, using conservation of linear momentum for the system (\rightarrow) :

$$5 \times 3 + 4 \times (-12) = 5v_1 + 4v_2$$

\$\Rightarrow -33 = 5v_1 + 4v_2\$ (1)

Using Newton's law of restitution:

$$\frac{1}{5} = \frac{v_2 - v_1}{3 - (-12)} = \frac{v_2 - v_1}{15}$$

$$\Rightarrow 3 = v_2 - v_1$$
(2)

Multiply equation (2) by 5 and add to equation (1) to obtain:

$$-18 = 9v_2$$

$$\Rightarrow v_2 = -2$$

Substituting this value into equation (1) gives:

$$-33 = 5v_1 - 8$$

$$-25 = 5v_1$$

$$\Rightarrow v_1 = -5$$

This answer may be checked by using equation (2).

After the collision, the speeds of A and B are $5 \,\mathrm{ms}^{-1}$ and $2 \,\mathrm{ms}^{-1}$ respectively, and both particles move to the left, i.e. particle A changes direction in the collision.

3 a Draw a clearly labelled diagram

Before collision

$$\begin{array}{c}
2.5 \,\mathrm{m \, s}^{-1} \\
\hline
B (2 \,\mathrm{kg})
\end{array}$$

$$\underbrace{vms^{-1}}_{B \text{ (2kg)}}$$

Using conservation of linear momentum for the system (\rightarrow) :

$$1 \times 4 + 2 \times 2.5 = 1 \times 2 + 2\nu$$

$$9 = 2 + 2v$$

$$2v = 7$$

$$\Rightarrow v = 3.5$$

Speed of B after the collision is $3.5 \,\mathrm{m \, s}^{-1}$.

b Using Newton's law of restitution:

$$e = \frac{v - 2}{4 - 2.5} = \frac{3.5 - 2}{4 - 2.5} = \frac{1.5}{1.5} = 1$$

4

Before collision

After collision

Using conservation of linear momentum for the system (\rightarrow) :

$$2 \times 4 + 6 \times (-6) = 2v_1 + 6v_2$$

\$\Rightarrow -14 = v_1 + 3v_2\$ (1)

Using Newton's law of restitution:

$$\frac{1}{5} = \frac{v_2 - v_1}{4 - (-6)} = \frac{v_2 - v_1}{10}$$

$$\Rightarrow 2 = v_2 - v_1$$
(2)

Adding equations (1) and (2) gives:

$$-12 = 4v_2 \Rightarrow v_2 = -3$$

Substituting this value into equation (2) gives:

$$2 = -3 - v_1 \Rightarrow v_1 = -5$$

After the collision, the speeds of A and B are $5 \,\mathrm{m\,s^{-1}}$ and $3 \,\mathrm{m\,s^{-1}}$ respectively, and both particles move in the direction sphere B was moving before the impact.

The impulse of sphere B on sphere A = change in momentum of sphere A

$$= 2 \times (-5) - 2 \times 4 = -18 \text{ N s}$$

The impulse of sphere A on sphere B = change in momentum of sphere B

$$= 6 \times (-3) - 6 \times (-6) = 18 \text{ N s}$$

Spheres A and B experience equal and opposite impulses of magnitude 18 Ns.

5

Before collision

After collision

At rest
$$Q(3m)$$

Using conservation of linear momentum for the system (\rightarrow) :

$$2mu - 3mu = 2mv + 3m \times 0$$

$$-mu = 2mv$$

$$\Rightarrow v = -\frac{u}{2}$$

After the collision, particle P changes direction and has a speed of $0.5u\,\mathrm{m\,s}^{-1}$

Using Newton's law of restitution:

$$e = \frac{0 - v}{u - (-u)} = \frac{\frac{u}{2}}{2u} = \frac{1}{4}$$

6

Before collision

After collision

$$\begin{array}{c}
u \\
\hline
B (2m)
\end{array}$$

$$\begin{array}{c}
v_2 \\
\hline
B (2m)
\end{array}$$

Using conservation of linear momentum for the system (\rightarrow) :

$$m \times 3u + 2m \times u = mv_1 + 2mv_2$$

$$\Rightarrow v_1 + 2v_2 = 5u$$
 (cancelling out the common factor m) (1)

Using Newton's law of restitution:

$$e = \frac{v_2 - v_1}{3u - u} = \frac{v_2 - v_1}{2u}$$

$$\Rightarrow v_2 - v_1 = 2ue$$
(2)

Adding equations (1) and (2) gives:

$$3v_2 = u(5+2e) \implies v_2 = \frac{u}{3}(5+2e)$$

Substituting into equation (1) gives:

$$\frac{u}{3}(5+2e)-v_1=2ue$$

$$3v_1 = 5u + 2ue - 6ue = u(5 - 4e)$$

$$\Rightarrow v_1 = \frac{u}{3}(5-4e)$$

7

Before collision

After collision

$$\begin{array}{c}
v_1 \\
\hline
A (m)
\end{array}$$

$$\begin{array}{c}
v_2 \\
\hline
B(m)
\end{array}$$

Using conservation of linear momentum for the system (\rightarrow) :

$$m \times 2u + m \times (-3u) = m(-v_1) + mv_2$$

$$\Rightarrow v_2 - v_1 = -u$$
 (cancelling out the common factor m) (1)

Using Newton's law of restitution:

$$e = \frac{v_2 - (-v_1)}{2u + 3u} = \frac{v_2 + v_1}{5u}$$

$$\Rightarrow v_2 + v_1 = 5ue$$
(2)

Adding equations (1) and (2) gives:

$$2v_2 = -u + 5eu \implies v_2 = \frac{u}{2}(5e - 1)$$

As
$$v_2 > 0$$
, $\frac{u}{2}(5e-1) > 0$

And as
$$u > 1 \Rightarrow (5e-1) > 0 \Rightarrow 5e > 1 \Rightarrow e > \frac{1}{5}$$

Note that subtracting equation (1) from equation (2) gives:

$$2v_1 = 5eu - (-u) \implies v_1 = \frac{u}{2}(5e+1)$$

So $v_1 > 0$ for any value of e as required.

8 a

Before collision

After collision

$$\bigvee_{A (m)}^{v}$$

$$0.3u$$

$$B (km)$$

Using conservation of linear momentum for the system (\rightarrow) :

$$mu = mv + km0.3u$$

$$\Rightarrow v = u(1 - 0.3k)$$
 (cancelling out the common factor m)

8 b Using Newton's law of restitution:

$$\frac{0.3u - v}{u - 0} = e$$

So using the result from part a

$$0.3u - u(1 - 0.3k) = eu$$

$$\Rightarrow e = 0.3k - 0.7$$

As $0 \le e \le 1$, therefore $0 \le 0.3k - 0.7 \le 1$

$$\Rightarrow 0.7 \le 0.3k \le 1.7$$

$$\Rightarrow \frac{7}{3} \leqslant k \leqslant \frac{17}{3}$$

9 a

Before collision

After collision

Using conservation of linear momentum for the system (\rightarrow) :

$$2mu + 3mu = vm + 3kmu$$

$$\Rightarrow v = u(5-3k)$$

(cancelling out the common factor m)

b Using Newton's law of restitution:

$$\frac{ku-v}{2u-u}=\epsilon$$

So using the result from part a

$$ku - u(5-3k) = eu$$

$$\Rightarrow e = 4k - 5$$

As $0 \le e \le 1$, therefore $0 \le 4k - 5 \le 1$

$$\Rightarrow$$
 5 \leq 4 $k \leq$ 6

$$\Rightarrow \frac{5}{4} \leqslant k \leqslant \frac{3}{2}$$

10 a

Before collision

After collision

$$\begin{array}{c}
2u \\
\bigcirc \\
Q (3m)
\end{array}$$

$$\begin{array}{c}
v_2 \\
\hline
Q(3m)
\end{array}$$

Using conservation of linear momentum for the system (\rightarrow) :

$$m \times 4u + 3m \times 2u = mv_1 + 3mv_2$$

$$\Rightarrow 3v_2 + v_1 = 10u$$
 (cancelling out the common factor m) (1)

Using Newton's law of restitution:

$$e = \frac{v_2 - v_1}{4u - 2u} = \frac{v_2 - v_1}{2u}$$

$$\Rightarrow v_2 - v_1 = 2ue$$
(2)

Adding equations (1) and (2) gives:

$$4v_2 = 10u + 2ue$$

$$\Rightarrow v_2 = \frac{u}{4}(10 + 2e) = \frac{u}{2}(5 + e)$$

b Substituting into equation (1) gives:

$$\frac{3u}{2}(5+e)+v_1=10u$$

$$2v_1 = 20u - 15u - 3ue$$

$$\Rightarrow v_1 = \frac{u}{2}(5-3e)$$

c The direction of motion of *P* is unchanged provided that $\frac{u}{2}(5-3e) > 0$, i.e. $e < \frac{5}{3}$ This must be the case as $0 \le e \le 1$

d Change of momentum of $Q = 3m(v_2 - 2u)$

$$=3m\left(\frac{5u}{2} + \frac{eu}{2} - 2u\right)$$
$$=\frac{3mu}{2}(1+e)$$

As impulse of P = change in momentum of Q, this gives:

$$2mu = \frac{3mu}{2}(1+e)$$

$$1+e=\frac{4}{3}$$

$$\Rightarrow e = \frac{1}{2}$$

Challenge

Using conservation of linear momentum for the system (\rightarrow) :

$$3m \times 2 + m \times (-u) = 3mv + 2mv$$

 $\Rightarrow 5v = 6 - u$ (cancelling out the common factor m) (1)

Using Newton's law of restitution:

$$\frac{1}{4} = \frac{2v - v}{2 + u}$$

$$\Rightarrow 4v = 2 + u$$
(2)

Eliminating v from equations (1) and (2) gives:

$$\frac{6-u}{5} = \frac{2+u}{4}$$
So $24-4u = 10+5u$

$$14 = 9u$$

$$\Rightarrow u = \frac{14}{9}$$