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Centres of mass of plane figures 2F 

1 a From question 1a in Exercise 2D,  
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 b From question 1a in Exercise 2E, 
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 c From question 1b in Exercise 2D. 
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In equilibrium, G will be vertically 

below O i.e. OG is the vertical. 
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2   From question 4 in Exercise 2D, 
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       A is the point of suspension. 

 

       G is 
79 51

, .
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   When the lamina hangs in equilibrium from A, 

   AG will be the downward vertical. 

   Let N be the point on AJ such that GN is perpendicular  

 to AJ. 

   Then ˆNAG   is the required angle. 
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3        G, the centre of mass has coordinates 
7

, 2
3

 
 
 

 

       taking O as origin. 

 

 

 

 

 

   is the required angle 
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These are the coordinates 

of the centre of mass, G, 

referred to O as origin. 

See diagram. 

Since A is the 

point (1, 3). 

Multiply top and 

bottom by 26. 

Since AG will be vertical in 

equilibrium, the angle between 

AC and the horizontal will be . 

Multiply top and bottom 

by 3 to clear fractions. 
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4       G is the centre of mass if the framework 
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       (see question 2 in Exercise 2E) 

 

 

 

   (see diagram) is the required angle. 
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5        
3

,
2π

OG  where G is 

       the centre of mass 

       so, AG will be vertical in 

       equilibrium. 

 

 

  

 

   Required angle is ˆAGO   
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G is on the line 

of symmetry. 

AG will be vertical, when 

the framework hangs in 

equilibrium. 

See question 4 in 

Exercise 2E. 

Since the angle with the 

horizontal will be 90 �

angle with the vertical. 
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6         Centre of mass of ∆RNQ 

        has position vector 
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 So the centre of mass of the lamina is  

 

 a 
26

7
cm from PS and 

 

 b 
18

7
cm from PQ. 

 

 c We have  

     18 26 9
7 7 22

tan / 10     

  So 22.2    

  

Taking PQ and PS 

as axes. 

Use r ri i im m   

Simplify. 
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7 We choose coordinates so that the origin is at C and that BC lies on the x-axis, by considering the 

lamina as the union of a 2 × 6 rectangle and a 6 × 2 rectangle we see the centre of mass will satisfy 
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 Now we attach a mass of 0.2M kg to F so the centre of mass of the whole system will satisfy 

 
1 6

1.2 0.2
4 6

x
M M M

y

     
            

 

 So 

 
2.2

1.2
5.2

x

y

   
      

 

 So 

 
111

266

x

y

   
      

  

   

 Hence the angle   satisfies 
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 67.1    

 

8 We choose coordinates so that the origin is at B and the x-axis is parallel to AC then the centre of 

mass of the lamina is 
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 And the coordinates of C are 
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 Hence the centre of mass of the system 

 Satisfies 
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9 a By considering the lamina as a union of two rectangles of size 2 × 4 and 4 × 2 we have the 
distance of the centre of mass to AC satisfies 
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 b Let T be the tension in the string at B then taking moments about A gives 
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  So 
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  Now let T be the tension in the string at A then taking moments about B gives 

  
5
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2

T g   

  So 

  5T g  

 
 c We will need to find the distance of the centre of mass from AB, by considering the rectangles that 

make up the lamina we have 

  16 8 1 8 2y      

  So 

  1.5y   

  Hence the angle with the vertical is 

  
1.5

tan
2.5

   

  So 31.0   

  Hence the angle with the horizontal is 
  180 149      
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10 We choose coordinates so that the origin is at the midpoint of PQ and the y-axis is parallel to PQ, 
then the coordinates of the centre of mass is 
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 So after attaching the mass at Q the centre of mass of the whole system satisfies 
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Now taking moments about P and the point where the right string meets the semicircle gives 
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11 a We take A to be the origin, then the lamina can be seen as a rectangle with a circular section 
removed 

  we have the centre of mass satisfies    
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  As required. 
 

 b Let 1 2,T T be the tensions in left and right strings respectively, taking moments about B gives 
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 c We have the angle  satisfies 
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 Which gives 

 39.1  �

 



  

© Pearson Education Ltd 2018. Copying permitted for purchasing institution only. This material is not copyright free. 9 

Challenge 

   

 We choose coordinates such that the origin is where the string meets the mobile and AH is parallel 
to the x-axis then by symmetry the centre of mass of the mobile lies on the line from O to the 

midpoint of AH and the y component satisfies  
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 Now the coordinates of A are  30, 5   

 So the centre of mass of the system satisfies 
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 Now we consider the angle that the line DE makes with the vertical this satisfies 
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 On the other hand, if G touches the ceiling then the triangle formed by O, G and the point where 

the cable meets the ceiling gives  
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 0.0343m M  

  
 


