Further centres of mass 3A

1

Mass = $M = \frac{1}{2} \rho \times 2 \times 6 = 6\rho$, where ρ is the mass per unit area.

$$M\overline{x} = \int_{0}^{2} \rho x (6 - 3x) dx \qquad M\overline{y} = \int_{0}^{2} \rho \frac{1}{2} (6 - 3x)^{2} dx$$

$$= \rho \int_{0}^{2} 6x - 3x^{2} dx \qquad = \frac{1}{2} \rho \int_{0}^{2} 36 - 36x + 9x^{2} dx$$

$$= \rho \left[3x^{2} - x^{3} \right]_{0}^{2} \qquad = \frac{1}{2} \rho \left[36x - 18x^{2} + 3x^{3} \right]_{0}^{2}$$

$$= \rho \left[4 - 0 \right] \qquad = \frac{1}{2} \rho \left[24 - 0 \right]$$

$$= 4\rho \qquad = 12\rho$$

$$\therefore \overline{x} = \frac{4\rho}{M} = \frac{4\rho}{6\rho} \qquad \therefore \overline{y} = \frac{12\rho}{M} = \frac{12\rho}{6\rho}$$

$$= \frac{2}{3} \qquad = 2$$

The centre of mass is at the point with coordinates $\left(\frac{2}{3},2\right)$

$$M = \int_0^2 \rho y \, dx$$
$$= \rho \int_0^2 3x^2 dx$$
$$= \rho \left[x^3 \right]_0^2$$
$$= 8\rho$$

$$M\overline{x} = \int_0^2 \rho x 3x^2 \, dx$$
$$= \rho \int_0^2 3x^3 \, dx$$
$$= \rho \left[\frac{3}{4} x^4 \right]_0^2$$
$$= 12\rho$$
$$\therefore \overline{x} = \frac{12\rho}{M} = \frac{12\rho}{8\rho}$$

$$M\overline{y} = \int_0^2 \frac{1}{2} \rho (3x^2)^2 dx$$

$$= \frac{1}{2} \rho \int_0^2 9x^4 dx$$

$$= \frac{9}{2} \rho \left[\frac{x^5}{5} \right]_0^2$$

$$= \frac{9 \times 32}{10} \rho$$

$$= \frac{144}{5} \rho$$

$$=\frac{3}{2}=1.5$$

$$\therefore \overline{y} = \frac{144\rho}{5M} = \frac{144\rho}{40\rho}$$

The centre of mass is at the point with coordinates (1.5, 3.6).

$$M = \rho \int_0^4 y \, dx$$
$$= \rho \int_0^4 x^{\frac{1}{2}} \, dx$$
$$= \left[\frac{2}{3} \rho x^{\frac{3}{2}} \right]_0^4$$
$$= \frac{16\rho}{3}$$

$$M\overline{x} = \rho \int_0^4 x x^{\frac{1}{2}} dx$$

$$= \rho \int_0^4 x^{\frac{3}{2}} dx$$

$$= \left[\frac{2}{5} \rho x^{\frac{5}{2}} \right]_0^4$$

$$= \frac{64\rho}{5}$$

$$\therefore \overline{x} = \frac{64\rho}{5M}$$

$$= \frac{64\rho}{5} \div \frac{16\rho}{3}$$

$$= \frac{64\rho}{5} \times \frac{3}{16\rho}$$

$$= \frac{12}{5} = 2.4$$

$$M\overline{y} = \frac{1}{2}\rho \int_0^4 \left(x^{\frac{1}{2}}\right)^2 dx$$

$$= \frac{1}{2}\rho \int_0^4 x dx$$

$$= \frac{1}{2}\rho \left[\frac{x^2}{x}\right]_0^4$$

$$= 4\rho$$

$$\therefore \overline{y} = \frac{4\rho}{M}$$

$$= 4\rho \div \frac{16\rho}{3}$$

$$= 4\rho \times \frac{3}{16\rho}$$

$$= \frac{3}{4} = 0.75.$$

The centre of mass is at the point with coordinates (2.4, 0.75).

$$M = \rho \int_0^1 (x^3 + 1) dx$$
$$= \rho \left[\frac{1}{4} x^4 + x \right]_0^1$$
$$= \frac{5}{4} \rho$$

$$M\overline{x} = \rho \int_0^1 x (x^3 + 1) dx$$

$$= \rho \int_0^1 x^4 + x^4 dx$$

$$= \rho \left[\frac{1}{5} x^5 + \frac{1}{2} x^2 \right]_0^1$$

$$= \frac{7}{10} \rho$$

$$\Rightarrow \frac{7}{10} \rho \Rightarrow M$$

$$= \frac{7}{10} \rho \Rightarrow \frac{5}{4} \rho$$

$$= \frac{7}{10} \times \frac{4}{5 \rho}$$

$$= \frac{28}{50} = \frac{14}{25}$$

$$M\overline{y} = \frac{1}{2} \rho \int_0^1 (x^3 + 1)^2 dx$$

$$= \frac{1}{2} \rho \int_0^1 x^6 + 2x^3 + 1$$

$$= \frac{1}{2} \rho \left[\frac{1}{7} x^3 + \frac{1}{2} x^4 + \frac{1}{$$

$$= \frac{1}{2}\rho \int_0^1 x^6 + 2x^3 + 1 dx$$

$$= \frac{1}{2}\rho \left[\frac{1}{7}x^3 + \frac{1}{2}x^4 + x \right]_0^1$$

$$= \frac{\rho}{2} \times \frac{23}{14} = \frac{23\rho}{28}$$

$$\therefore \overline{y} = \frac{23\rho}{28} \div M$$

$$= \frac{23\rho}{28} \div \frac{5}{4}\rho$$

$$= \frac{23\rho}{28} \times \frac{4}{5\rho}$$

$$= \frac{23\rho}{35\rho} = \frac{23}{35}$$

The centre of mass is at the point with coordinates $\left(\frac{14}{25}, \frac{23}{35}\right)$

$$M = \rho \int_0^a 2y \, dx$$

$$= \rho \int_0^a 2 \times 2a^{\frac{1}{2}} x^{\frac{1}{2}} \, dx$$

$$= 4\rho a^{\frac{1}{2}} \left[\frac{2}{3} x^{\frac{3}{2}} \right]_0^a$$

$$= \frac{8}{3} \rho a^2$$

$$M\overline{x} = \rho \int_0^a x \times 4a^{\frac{1}{2}}x^{\frac{1}{2}} dx$$

$$= \rho \int_0^a 4a^{\frac{1}{2}}x^{\frac{3}{2}} dx$$

$$= \rho \times 4a^{\frac{1}{2}} \left[\frac{2}{5}x^{\frac{5}{2}} \right]_0^a$$

$$= \frac{8\rho}{5}a^3$$

$$\therefore \overline{x} = \frac{8\rho a^3}{5} \div M$$

$$= \frac{8\rho a^3}{5} \div \frac{8\rho a^2}{3}$$

$$= \frac{3}{5}a$$

From symmetry $\overline{y} = 0$

 \therefore The centre of mass is at the point with coordinates $\left(\frac{3}{5}a,0\right)$

From symmetry
$$\bar{x} = \frac{\pi}{2}$$

$$M\overline{y} = \frac{1}{2}\rho \int_0^{\pi} \sin^2 x \, dx$$

$$= \frac{1}{2}\rho \times \frac{1}{2} \int_0^{\pi} 1 - \cos 2x \, dx$$

$$= \frac{1}{4}\rho \left[x - \frac{1}{2} \sin 2x \right]_0^{\pi}$$

$$= \frac{1}{4}\rho \pi$$

$$\therefore \overline{y} = \frac{1}{4}\rho \pi \div M = \frac{1}{4}\rho \pi \div 2\rho$$

$$= \frac{1}{8}\pi$$

The centre of mass is at the point with coordinates $\left(\frac{\pi}{2}, \frac{\pi}{8}\right)$

$$M = \rho \int_0^1 y \, dx$$
$$= \rho \int_0^1 \frac{1}{1+x} \, dx$$
$$= \rho \left[\ln \left(1+x \right) \right]_0^1$$
$$= \rho \ln 2$$

$$M\overline{x} = \rho \int_0^1 \frac{x}{1+x} dx$$

$$= \rho \int_0^1 1 - \frac{1}{1+x} dx$$

$$= \rho \left[x - \ln(1+x) \right]_0^1$$

$$= \rho \left[1 - \ln 2 \right]$$

$$\therefore \overline{x} = \rho \frac{\left[1 - \ln 2 \right]}{M}$$

$$= \rho \frac{\left[1 - \ln 2 \right]}{\rho \ln 2}$$

$$= \frac{1 - \ln 2}{\ln 2}$$

$$M\overline{y} = \frac{1}{2}\rho \int_0^1 \frac{1}{(1+x)} dx$$

$$= \frac{1}{2}\rho \left[-(1+x)^{-1} \right]_0^1$$

$$= \frac{1}{2}\rho \left[\frac{-1}{2} + 1 \right]$$

$$= \frac{1}{4}\rho$$

$$\therefore \overline{y} = \frac{1}{4}\rho \div M$$

$$= \frac{\frac{1}{4}\rho}{\rho \ln 2}$$

$$= \frac{1}{4 \ln 2}$$

The centre of mass is at the point with coordinates $\left(\frac{1-\ln 2}{\ln 2}, \frac{1}{4\ln 2}\right)$

 $M = \frac{1}{4} \rho \pi r^2$ as this is a quarter of a circle.

$$M\overline{x} = \rho \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2} r^2 \times \frac{2}{3} r \cos \theta \, d\theta$$

$$= \rho \times \frac{1}{3} r^3 \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos \theta \, d\theta$$

$$= \frac{1}{3} \rho r^3 \left[\sin \theta \right]_{-\frac{\pi}{4}}^{\frac{\pi}{4}}$$

$$= \frac{1}{3} \rho r^3 \left[\frac{1}{\sqrt{2}} - \left(\frac{-1}{\sqrt{2}} \right) \right]$$

$$= \frac{2\rho r^3}{3\sqrt{2}}$$

$$\therefore \overline{x} = \frac{2\rho r^3}{3\sqrt{2}} \div \frac{1}{4} \rho \pi r^2$$

$$= \frac{8r}{3\pi\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$$

$$= \frac{8\sqrt{2}}{6\pi} = \frac{4\sqrt{2}}{3\pi}$$

Also $\overline{y} = 0$ from symmetry.

The centre of mass is at the point with coordinates $\left(\frac{4\sqrt{2}r}{3\pi},0\right)$

$$y = x^3$$
 meets $y = 4x$ when $x^3 = 4x$ i.e. $x = \pm 2$.
 \therefore when $x > 0, x = 2$

The small strip shown has dimensions $(y_2 - y_1)$ by δx and centre of mass at $\left(x, \frac{1}{2}(y_1 + y_2)\right)$

$$M = \rho \int_0^2 (4x - x^3) dx$$
$$= \rho \left[2x^2 - \frac{1}{4}x^4 \right]_0^2$$
$$= 4\rho$$

$$= 4\rho$$

$$M\overline{x} = \rho \int_{0}^{2} x(4x - x^{3}) dx$$

$$= \rho \int_{0}^{2} 4x^{2} - x^{4} dx$$

$$= \rho \left[\frac{4}{3} x^{3} - \frac{1}{5} x^{5} \right]_{0}^{2}$$

$$= \frac{1}{2} \rho \int_{0}^{2} (4x + x^{3}) (4x - x^{3}) dx$$

$$= \frac{1}{2} \rho \int_{0}^{2} (4x + x^{3}) (4x - x^{3}) dx$$

$$= \frac{1}{2} \rho \int_{0}^{2} 16x^{2} - x^{6} dx$$

$$= \rho \left[\frac{32}{3} - \frac{32}{5} \right]$$

$$= \frac{64\rho}{15}$$

$$\Rightarrow \frac{64\rho}{15}$$

$$\Rightarrow \frac{64\rho}{15} \div M = \frac{64\rho}{15} \div 4\rho$$

$$= \frac{16}{15}$$

$$\Rightarrow \overline{y} = \frac{256}{21} \rho$$

$$\Rightarrow \overline{y} = \frac{256}{21} \rho \div M = \frac{256}{21} \rho \div 4\rho$$

$$= \frac{64}{21}$$

The centre of mass is at the point with coordinates $\left(\frac{16}{15}, \frac{64}{21}\right)$

Using
$$M = \rho \int_0^4 (x_2 - x_1) dy$$

$$\therefore M = \rho \int_0^4 \left(6 - \frac{1}{4} y^2 - \frac{y}{2} \right) dy$$

$$= \rho \left[6y - \frac{1}{12} y^3 - \frac{1}{4} y^2 \right]_0^4$$

$$= \rho \left[24 - \frac{16}{3} - 4 \right]$$

$$= \frac{44}{3} \rho$$

Using
$$M\overline{y} = \rho \int_0^4 y(x_2 - x_1) dy$$

$$M\overline{y} = \rho \int_0^4 6y - \frac{1}{4}y^3 - \frac{y^2}{2} dy$$

$$= \rho \left[3y^2 - \frac{1}{16}y^4 - \frac{1}{6}y^3 \right]_0^4$$

$$= \rho \left[48 - 16 - \frac{64}{6} \right]$$

$$= \frac{64}{3}\rho$$

$$\therefore \overline{y} = \frac{64}{3}\rho \div M = \frac{64}{3} \times \frac{3}{44}$$

$$= \frac{16}{11}$$

$$= 1.5(2 \text{ s.f.})$$

Divide the region into horizontal strips of dimensions $(x_2 - x_1)$ by δy .

The centre of mass of such strips lies at $\left(\frac{x_1 + x_2}{2}, y\right)$

where
$$x_1 = \frac{y}{2}$$
 and $x_2 = \frac{24 - y^2}{4}$

10 continued

Using
$$M\overline{x} = \rho \int_0^6 yx \, dx = \rho \int_0^2 yx \, dx + \rho \int_2^6 yx \, dx$$

$$= \rho \int_0^2 2x^2 \, dx + \rho \int_2^6 x \sqrt{24 - 4x} \, dx$$

$$= \rho \left[\frac{2}{3} x^3 \right]_0^2 - \rho \left[\frac{4}{5} (x + 4)(6 - x) \sqrt{6 - x} \right]_2^6$$

$$= \rho \left[\frac{16}{3} + \frac{192}{5} \right] = \rho \left[\frac{656}{15} \right]$$

$$\therefore \overline{x} = \frac{656}{15} \rho \div M = \frac{656}{15} \times \frac{3}{44}$$

$$= 2\frac{54}{55}$$

$$= 2.98(2 \text{ s.f.})$$

Hence the centre of mass has coordinates $\left(2\frac{54}{55}, 1\frac{5}{11}\right)$

By symmetry, the centre of mass of the uniform lamina will lie on the y = 0 axis. The mass of the lamina is $M = 2\int_0^4 \rho y \, dx$, where ρ is the density. Integrating gives $M = 2\rho \int_0^4 \frac{x+5}{(x+2)(2x+1)} \, dx$

$$= 2\rho \int_0^4 \left(\frac{3}{2x+1} - \frac{1}{x+2} \right) dx$$
$$= 2\rho \left[\frac{3}{2} \ln(2x+1) - \ln(x+2) \right]_0^4$$
$$= 2\rho \left(\ln(27) - \ln(3) \right) = 2\rho \ln(9)$$

Now using the formula $M \overline{x} = 2 \int_0^4 \rho xy \, dx$,

$$M \,\overline{x} = 2\rho \int_0^4 \frac{(x+5)x}{(x+2)(2x+1)} \, dx$$

$$= 2\rho \int_0^4 \left(-\frac{3}{2(2x+1)} + \frac{2}{x+2} + \frac{1}{2} \right) \, dx$$

$$= 2\rho \left[-\frac{3}{4} \ln(2x+1) + 2\ln(x+2) + \frac{1}{2} x \right]_0^4$$

$$= 2\rho \left(-\frac{1}{4} \ln(27) + 2\ln(3) + 2 \right) = \rho \left(4 + \ln(3) \right)$$
Hence $\overline{x} = \frac{\rho \left(4 + \ln(3) \right)}{4\rho \ln(3)} \approx 1.16 \, (3 \text{ s.f.}), \text{ and } \overline{y} = 0$

12 The mass of the lamina is
$$M = \int_0^3 \rho y \, dx = \rho \int_0^3 \frac{1}{\sqrt{x^2 + 4}} \, dx$$

$$= \rho \left[\operatorname{arcsinh} \left(\frac{1}{2} x \right) \right]_0^3 = \rho \operatorname{arcsinh} \left(\frac{3}{2} \right)$$

Using the formula $M \overline{x} = \int_0^3 \rho xy \, dx$

$$= \rho \int_0^3 \frac{x}{\sqrt{x^2 + 4}} dx$$
. Make a change of variable $u = x^2 + 4$, $du = 2x dx \Rightarrow$

$$M\overline{x} = \rho \int_4^{13} \frac{1}{2\sqrt{u}} du = \rho \left[\sqrt{u} \right]_4^{13} = \rho \left(\sqrt{13} - 2 \right).$$

We also have
$$M \overline{y} = \int_0^3 \rho \frac{1}{2} y^2 dx$$

$$= \rho \int_0^3 \frac{1}{x^2 + 4} \, dx = \frac{1}{4} \rho \left[\arctan\left(\frac{1}{2}x\right) \right]_0^3$$

$$=\frac{1}{4}\rho\arctan\left(\frac{3}{2}\right)$$
. Hence,

$$\overline{x} = \frac{\left(\sqrt{13} - 2\right)}{\operatorname{arcsinh}\left(\frac{3}{2}\right)} \approx 1.34 \text{ (3 s.f.), and } \overline{y} = \frac{\arctan\left(\frac{3}{2}\right)}{4\arcsin\left(\frac{3}{2}\right)} \approx 0.206 \text{ (3 s.f.)}$$

Challenge

First we find the centre of mass of the pendant. The equation of the pendant curve is $x = y^2$.

Because the pendant is symmetric, $\overline{y} = 0$. Using the formula $M \overline{x} = 2 \int_0^4 \rho xy \, dx$

$$=2\rho \int_0^4 x \sqrt{x} \, dx = 2\rho \left[\frac{2}{5} x^{5/2} \right]_0^4 = \rho \frac{128}{5}.$$
 The mass of the pendant is $M = 2 \int_0^4 \rho y \, dx$

$$=2\rho\int_0^4 \sqrt{x} \, dx = 2\rho\left[\frac{2}{3}x^{3/2}\right]_0^4 = \rho\frac{32}{3}$$
, hence $\overline{x} = 2.4$. If the pendant is suspended at any point *P* on its perimeter, no part of the pendant should be higher than *P*. If we connect *P* to the centre of mass with a line ℓ_{++} and draw a line ℓ_{++} at *P* which is perpendicular to ℓ_{++} no parts of pendant should be above

a line ℓ_1 , and draw a line ℓ_2 at P which is perpendicular to ℓ_1 , no parts of pendant should be above that line. Some possible points are immediately obvious: these are on the symmetry axis y = 0, (0,0)

and (4,0). Suppose another such point is (x_0, y_0) . The equation for ℓ_1 is $\frac{y - \overline{y}}{x - \overline{x}} = -\frac{1}{k}$, and for ℓ_2 is

$$\frac{y-y_0}{x-x_0} = k = \left[\frac{\mathrm{d}y}{\mathrm{d}x}\right]_{x_0} = \frac{1}{2\sqrt{x_0}}$$
. Hence, at (x_0, y_0) we have $\frac{y_0 - \overline{y}}{x_0 - \overline{x}} = -2\sqrt{x_0}$. Note that $y_0 = \sqrt{x_0}$.

Now we can find $x_0 = 1.9$, and $y_0 = \sqrt{1.9}$. By symmetry, point $(1.9, -\sqrt{1.9})$ will also be a solution.

We also need to check the edges, where the tangent to the pendant is not defined. This gives us two more points $(4,\pm 2)$.