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Further centres of mass 3A
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The centre of mass is at the point with coordinates (5, 2)
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The centre of mass is at the point with coordinates (1.5, 3.6).
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The centre of mass is at the point with coordinates (2.4, 0.75).
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The centre of mass is at the point with coordinates (% %)
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From symmetry y =0

.. The centre of mass is at the point with coordinates (%a,Oj
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The centre of mass is at the point with coordinates (g,gj
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The centre of mass is at the point with coordinates ,
In2 4In2
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Also y =0 from symmetry.

The centre of mass is at the point with coordinates [ 3
T

427 OJ
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? FA : y=x" meets y =4x when x° =4xie. x=42.
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The centre of mass is at the point with coordinates (% %)
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10 i)“ Divide the region into horizontal strips of
Q\ dimensions (x, —x,)bySy.
Y1 4 \ The centre of mass of such strips lies at
| | xNtx
LN (325,,)
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10 continued

: 6 2 6
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~2.98(2 s.f)

Hence the centre of mass has coordinates (22—: 1%)

11 By symmetry, the centre of mass of the uniform lamina will lie on the y =0 axis. The mass of the

xX+5
lamina is M =2 dx , where p is the density. Integrating gives M = —dx
[ py p y. Integrating g 2pf e
1
=2 - dx
,Dj (2x+1 x+2j

:2p[%1n(2x+1)—ln(x+2)}

4

0

=2p(In(27)-1n(3)) = 2pIn(9)
Now using the formula M x =2 I: pxydx,

4 (x+5x
0 (x+ 2)(2x +1)

2 1
,OJ.( 2(2x+1) x+2+2jdx

= 2,0[—%111(2)6+1)+21n(x+2)+5x}

MXx=2p

4

0

=2p(-+In(27)+21In(3)+2) = p(4+1In(3))
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Hence x = ~1.16(3s.f),and y =0
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1

X’ +4

dx

3 3
The mass of the lamina is M = .[0 pydx = ,0.[0

= p| arcsinh (4 x)]z = parcsinh (%)
Using the formula M x = .[: pxy dx

= pj: Y dx. Make a change of variable u = x* +4, du = 2xdx =

VXt +4

e b= o[ = (52

3
We also have M y = .[0 ply?dx

- pjj x21+4 dx = %p[arctan(%x)]z

=1 parctan(2). Hence,

Viz-2 3

< =(+) ~134 (3 s.£), and 7 = ama,n(z) ~0.206 (3 5.f)
arcsmh(%) 4 arcsinh (%)

Challenge

First we find the centre of mass of the pendant. The equation of the pendant curve is x = y°.

4
Because the pendant is symmetric, y =0. Using the formula M x =2 .[0 pxy dx

4

4 4
= 2,0.[0 xvx dr = 2p[%x5/2}0 = p12 . The mass of the pendant is M = 2.[0 pydx

4 ) 32 4 kY — . . .
= 2,0.[0 Jx dx = 2p [;x l) = p<, hence x =2.4. If the pendant is suspended at any point P on its
perimeter, no part of the pendant should be higher than P. If we connect P to the centre of mass with
a line /,, and draw a line /,at P which is perpendicular to ¢, no parts of pendant should be above

that line. Some possible points are immediately obvious: these are on the symmetry axis y =0, (0, 0)
and (4,0). Suppose another such point is (x,,y,). The equation for 7, is J _Z = —%, and for /7, is
xX—X

m:k:{d—y} _ 1 .Hence,at(xo,yo)wehaveM:—L/Q.Notethaty():\/z.
X—X, dx ], 24/x, Xo =X

Now we can find x, =1.9, and y, =+1.9 . By symmetry, point (1.9, —\/1.9) will also be a solution.

We also need to check the edges, where the tangent to the pendant is not defined. This gives us two
more points (4,+2).
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