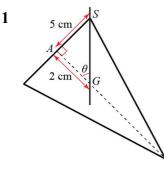
Further Mechanics 2

Further centres of mass 3D



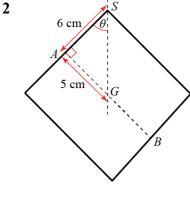
The diagram shows the equilibrium position with the centre of mass G, vertically below the point of suspension S.

As
$$AG = \frac{1}{4}h$$
 for a cone
 $\therefore AG = 2$ cm
Also the radius $AS = 5$ cm.

Let the angle between the vertical and the axis be $\theta\,$.

Then from $\triangle ASG$, $\tan \theta = \frac{5}{2}$

 $\therefore \theta = 68^{\circ}$ (to the nearest degree)



The diagram shows the equilibrium position with the centre of mass G below the point of suspension S.

As
$$AG = \frac{1}{2}h$$
 for a uniform cylinder
 $\therefore AG = 5$ cm

Also the radius AS = 6 cm.

The angle between the vertical and the circular base of the cylinder is θ .

From $\triangle ASG$, $\tan \theta = \frac{5}{6}$

$\therefore \theta = 40^{\circ}$ (to the nearest degree)

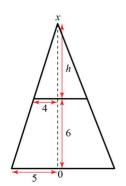
3 The distance from the centre of mass to the base is $\frac{1}{2}r$ from the centre. The angle between the axis of the shell and the downward vertical when the shell is in equilibrium

$$\tan \theta = \frac{r}{\frac{1}{2}r} = 2 \Longrightarrow \theta = \arctan 2 \approx 63.4^{\circ} (3 \text{ s.f.}).$$

Further Mechanics 2

4 a

b



From similar triangles

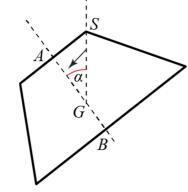
 $\frac{h}{h+6} = \frac{4}{5}$ $\therefore 5h = 4h + 24$ i.e. h = 24

Centre of mass lies at the axis of symmetry OX.

Shape	Mass	Mass ratios	Position of centre of mass i.e. distance from <i>O</i>
Large cone	$\frac{1}{3}\pi\rho\times5^2\times30$	125	$\frac{30}{4} = 7.5$
Small cone	$\frac{1}{3}\pi\rho\times4^2\times24$	64	$6 + \frac{24}{4} = 12$
Frustum	$\frac{250\pi}{3}\rho - 128\pi\rho$	61	\overline{x}

Take moments about O

 $125 \times 7.5 - 64 \times 12 = 61\overline{x}$ $\therefore 169.5 = 61\overline{x}$ $\therefore \overline{x} = 2.78(3 \text{ s.f.}) \left(\text{ or } \frac{339}{122} \right)$



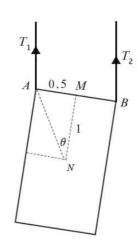
In equilibrium the centre of mass G lies vertically below the point of suspension S.

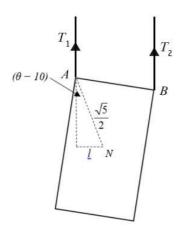
Let the required angle be α . AS is smaller radius = 4 cm AG = 6 - 2.78 = 3.22 cm (3 s.f.) $\tan \alpha = \frac{AS}{AG} = \frac{4}{3.22}$ $\therefore \alpha = 51^{\circ}$ (to the nearest degree)

Further Mechanics 2

5
$$\tan \theta = \frac{\frac{1}{2}}{1} \Rightarrow \theta = \tan^{-1}\left(\frac{1}{2}\right) = 26.565...$$

 $AN = \sqrt{1^2 + \left(\frac{1}{2}\right)^2} = \frac{\sqrt{5}}{2}$





$$\sin\left(\theta - 10\right) = \frac{l}{\sqrt{\frac{5}{2}}} \Longrightarrow l = 0.3187...$$

perpendicular distance, x, of B from A is

$$\cos 10 = \frac{x}{1} \Longrightarrow x = 0.9848...$$

Taking moments about A

 $0.3187 \times 2g = 0.9848T_2$ $T_2 = 6.34 \text{ N} (3 \text{ s.f.})$ Since $T_1 + T_2 = 2g$ $T_1 = 13.3 \text{ N} (3 \text{ s.f.})$ 6 a The mass density of the rod is given by $\rho = \frac{10}{\sqrt{1+h}}$ kg/m. The mass of the rod

 $M = \int_{0}^{1} \rho \, dh = \int_{0}^{1} \frac{10}{\sqrt{1+h}} \, dh = 20 \left[\sqrt{1+h} \right]_{0}^{1} = 20 \left(\sqrt{2} - 1 \right) \approx 8.28 \text{ kg. The centre of mass of the rod is}$ given by $M \,\overline{x} = \int_{0}^{1} h \rho \, dh = \int_{0}^{1} h \frac{10}{\sqrt{1+h}} \, dh$. To do this integral make a substitution u = h + 1 $\int \frac{h}{\sqrt{1+h}} \, dh = \int \frac{u-1}{\sqrt{u}} \, du = \int \sqrt{u} - \frac{1}{\sqrt{u}} \, du$ $= \frac{2}{3} u^{3/2} - 2\sqrt{u} + c = \frac{2}{3} (h+1)^{3/2} - 2\sqrt{h+1} + c$ $= \frac{2}{3} (h-2)\sqrt{h+1} + c$. Hence, $M \,\overline{x} = \left[\frac{20}{3} (h-2)\sqrt{1+h} \right]_{0}^{1} = \frac{20}{3} \left(2 - \sqrt{2} \right)$ and $\overline{x} = \frac{\frac{20}{3} \left(2 - \sqrt{2} \right)}{20 \left(\sqrt{2} - 1 \right)} = \frac{\sqrt{2}}{3} \approx 0.471 \, \text{m (3 s.f.)}.$

b Resolving vertically $T_1 + T_2 = Mg$. Taking moments about point Q, $T_1 l \cos 45^\circ = Mg\overline{x} \sin 45^\circ$ where

$$l = 1$$
 m is the length of the rod. This gives $T_1 = Mg \frac{\overline{x}}{l} \approx 20(\sqrt{2}-1) \times 10 \times \frac{\frac{20}{3}(2-\sqrt{2})}{20(\sqrt{2}-1)}$
= $\frac{200}{3}(2-\sqrt{2}) \approx 38.3$ N and $T_2 = Mg - T_1 \approx 42.9$ N (both 3 s.f.).

7 **a** The mass density of the rod is given as $m(x) = 1 + 3x \text{ kg m}^{-1}$, and the length l = 10 m. The mass of the rod is $M = \int_0^l m(x) dx = \int_0^{10} (1 + 3x) dx = \left[x + \frac{3}{2}x^2\right]_0^{10}$

= 100 kg.
The centre of mass of the rod is

$$M \ \overline{x} = \int_0^1 xm(x) dh = \int_0^{10} x(1+3x) dx$$

 $= \left[\frac{1}{2}x^2 + x^3\right]_0^{10} = 1050 \Longrightarrow$
 $\overline{x} = \frac{105}{16} \approx 6.56$ m.

Resolving vertically $N_P + N_Q = Mg$, where N_P and N_Q are the reaction forces at P and Q respectively. Taking moments about the centre of mass

$$N_{p}(\overline{x}-1) = N_{Q}(l-1-\overline{x}), \text{ which gives}$$

$$N_{p} = \frac{1}{8}Mg(9-\overline{x}) = \frac{1}{8}160(9-\frac{105}{16})g$$

$$= \frac{195}{4}g \approx 478 \text{ N} (3 \text{ s.f.}), \text{ and}$$

$$N_{Q} = \frac{1}{8}Mg(\overline{x}-1) = \frac{1}{8}160(\frac{105}{16}-1)g$$

$$= \frac{445}{4}g \approx 1090 \text{ N} (3 \text{ s.f.})$$

b If the rod is on the point of turning about Q, then we take moments about point Q, noting that the distance from P to Q is eight times the distance from the mass m to Q. Hence we have

 $8N_P = mg \times 1 \Longrightarrow 390g = mg$ So m = 390 kg. 8 a If we slice the cylinder into thin horizontal slices, the mass of the cylinder is $f^{30}_{30} = 2.044$

$$M = \int_{0}^{30} \pi 10^{2} e^{0.1h} dh = \pi 10^{2} \left[10 e^{x/10} \right]_{0}^{30} \text{ kg}$$
$$= \left(e^{3} - 1 \right) \pi$$
The centre of mass is $M \ \overline{y} = \int_{0}^{30} \pi 10^{2} h e^{0.1h} dh$
$$= 10^{2} \left(\left[10 e^{-0.1h} \right]_{0}^{30} + 10^{2} h e^{0.1h} dh \right]$$

$$= \pi 10^{2} \left(\left[10e^{0.1h}h \right]_{0}^{30} - 10 \int_{0}^{30} e^{0.1h} dh \right) = \pi 10^{2} \left[10e^{0.1h}h - 100e^{0.1h} \right]_{0}^{30}$$
$$= 100 (1 + 2e^{3}) \Longrightarrow$$
$$\overline{v} = \frac{10 (1 + 2e^{3})}{e^{3} - 1} \text{ cm}$$

b We find $\tan \theta = \frac{h - \overline{x}}{r}$, where *h* is the height of the cylinder and *r* is the radius. Hence

$$\tan \theta = \frac{30 - \overline{x}}{10} = 3 - 0.1\overline{x} = 3 - \frac{1 + 2e^3}{e^3 - 1}$$
$$= \frac{e^3 - 4}{e^3 - 1} \Longrightarrow \theta \approx 40^\circ$$

9 a The volume of the uniform solid is

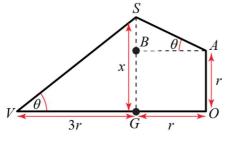
 $V = \pi \times 5^2 \times 10 - \frac{2}{3} \times \pi \times 3^3 = 232\pi \text{ cm}^3$. The centre of mass of the solid can be found by taking moments about point $O \ \pi \times 5^2 \times 10 \times 5 - \frac{2}{3} \times \pi 3^3 \times \frac{3}{8} \times 3 = 232\pi \overline{x}$

⇒ $\overline{x} \approx 5.30$ cm horizontally from the point *O*. Note that we will want to use metric units from this point. Resolving forces vertically gives $T_1 + T_2 = Mg$. Taking the moments about the point *A* gives $T_2 \times 0.1 = Mg\overline{x} \Rightarrow T_1 = Mg(1-10\overline{x})$ = $232 \times 10^{-6} \times 10 \times (1-10 \times 0.053)$

 $\approx 1.07 \times 10^{-3}$ N (3 s.f.) where we have taken g = 9.8.

Using $T_1 + T_2 = Mg$ we then obtain that $T_2 \approx 1.21 \times 10^{-3}$ N (3 s.f.).

b As the horizontal from the point A will be going through the centre of mass and the radius of the cylinder is 5 cm, the angle is $\tan \theta = \frac{\overline{x}}{5} \approx 1.06 \Rightarrow \theta \approx 46.7^{\circ}$.



In equilibrium the centre of mass G lies below the point of suspension S. Let distance SG = x. O is the centre of the base of the cone and V is its vertex.

A and B are shown on the diagram.

$$\tan \theta = \frac{x}{3r} (\operatorname{from} \Delta VSG)$$

Also $\tan \theta = \frac{x-r}{r} (\operatorname{from} \Delta ABS)$
$$\therefore \frac{x}{3r} = \frac{x-r}{r}$$

$$\therefore x = 3x - 3r$$

$$\therefore 2x = 3r$$

$$\therefore x = \frac{3r}{2}$$

$$\therefore \tan \theta = \frac{1}{2}$$

b Resolve vertically for the forces acting on the cone:

$$2T \sin \theta = mg$$

$$\therefore T = \frac{mg}{2 \sin \theta}$$

As $\tan \theta = \frac{1}{2}$, $\sin \theta = \frac{1}{\sqrt{5}}$ (from Pythagoras)

$$\therefore T = \frac{\sqrt{5} mg}{2} N$$

11 First consider the metal mould. Taking moments about point O,

 $\tfrac{2}{3}\pi \times 60^3 \times \tfrac{3}{8} \times 60 - \tfrac{2}{3}\pi \times 40^3 \times \tfrac{3}{8} \times 40$

$$= \left(\frac{2}{3}\pi \times 60^3 - \frac{2}{3}\pi \times 40^3\right)\overline{x} \Longrightarrow$$

 $\overline{x} = \frac{975}{38} \approx 25.7$ (3 s.f.) along the symmetry axis. Taking moments about *O* when the mould is filled with plastic

$$10\rho\left(\frac{2}{3}\pi\times60^{3}-\frac{2}{3}\pi\times40^{3}\right)\overline{x}+\rho\left(\frac{2}{3}\pi\times40^{3}\right)\times\frac{3}{8}\times40$$
$$=\left(10\rho\left(\frac{2}{3}\pi\times60^{3}-\frac{2}{3}\pi\times40^{3}\right)+\rho\left(\frac{2}{3}\pi\times40^{3}\right)\right)\overline{X}.$$

From which we find $\overline{X} = 25.2$ cm along the symmetry axis. Now we can find the angle that the plane face makes with the vertical

$$\tan \theta = \frac{X}{60} = 0.42 \Longrightarrow \theta \approx 22.8^{\circ}.$$