Further centres of mass 3E

Let the maximum height be h cm. The cylinder is about to topple and so its centre of mass G is directly above the point S on the circumference of the base. X is the midpoint of the base.

As $\alpha + 40^{\circ} = 90^{\circ}, \alpha = 50^{\circ}$.

In ΔGSX , SX = 2 cm (radius)

$$GX = \frac{h}{1} (\text{position of centre of mass})$$

$$\therefore \tan 50^\circ = \frac{\frac{h}{2}}{2}$$

$$\therefore h = 4 \tan 50^\circ$$

$$\therefore h = 4.77 \text{ cm} (3 \text{ s.f.})$$

a When the cylinder is about to topple, *G* is vertically above point *S*. *X* is the midpoint of the base. Let α be the angle which the plane makes with the horizontal.

In triangle $GSX, \hat{SGX} = \alpha$

 $GX = \frac{1}{2} \times 10 \text{ cm} = 5 \text{ cm} \text{ (position of centre of mass)}$ SX = 3 cm (radius) $\therefore \tan \alpha = \frac{3}{5}$ i.e. $\alpha = 31^{\circ}$ (to the nearest degree)

b The equilibrium is maintained if $\tan \theta = \frac{3}{5}$. At the point of slipping, $F = \mu R$, where *F* is frictional force, *R* reactive force and μ is the coefficient of friction. Resolving forces in the direction orthogonal to the plane $R - Mg \cos \theta = 0$, and parallel to the plane $F - Mg \sin \theta = 0$. These two conditions imply that $\mu = \tan \theta$ at the point of slipping. Hence $\mu = \frac{3}{5}$.

a When the cone is about to slide $F = \mu R$

i.e.
$$F = \frac{\sqrt{3}}{3}R$$
 (1)

 $\frac{h}{4}$ cm

R(↗)

Then $F - mg\sin\alpha = 0$ $\therefore F = Mg\sin\alpha$ (2)

$$R(\checkmark)$$

Then $R - Mg \cos \alpha = 0$ $\therefore R = Mg \cos \alpha$ (3)

Substituting F and R into equation (1)

Then
$$Mg \sin \alpha = \frac{\sqrt{3}}{3} Mg \cos \alpha$$

 $\therefore \tan \alpha = \frac{\sqrt{3}}{3}$
 $\therefore \quad \alpha = 30^{\circ}$

b From ΔGSX , where G is the centre of mass of the cone, X the centre of its base and S a point on the circumference of the base about which topping is about to occur:

$$\tan \alpha = \frac{5}{\frac{h}{4}} = \frac{20}{h}$$

$$\therefore \quad h = \frac{20}{\tan \alpha} = 20 \div \frac{\sqrt{3}}{3} = 20\sqrt{3} = 35 \,\mathrm{cm} \,(2 \,\mathrm{s.f.})$$

Let the point about which toppling occurs be A.

Take moments about point A.

When toppling is about to occur, R and F act through point A.

So
$$P\cos 60 \times 2r + P\sin 60 \times r = Mg \times r$$

$$\therefore Pr + \frac{P\sqrt{3}}{2}r = Mgr$$
$$\therefore P\left(1 + \frac{\sqrt{3}}{2}\right) = Mg$$

So
$$P = \frac{2Mg}{2+\sqrt{3}}$$

b
$$R(\rightarrow)$$

 $P\cos 60^\circ - F = 0$

$$\therefore \qquad F = \frac{Mg}{2 + \sqrt{3}}$$

$$R(\uparrow)$$
$$P\sin 60^\circ + R - Mg = 0$$

$$\therefore R = Mg - \frac{Mg\sqrt{3}}{2+\sqrt{3}} = \frac{2Mg}{2+\sqrt{3}}$$

As the cone is on the point of slipping, $F = \mu R$

$$\therefore \mu = F \div R = \frac{1}{2}$$

i.e. μ , the coefficient of friction, $=\frac{1}{2}$

Let the height of the small cone shown be h.

Using similar triangles

$$\frac{h}{h+2r} = \frac{r}{2r}$$
$$\therefore 2h = h+2r$$
$$\therefore h = 2r$$

Shape	Mass	Ratio of masses	Distance of centre of mass from X
Large cone	$\rho \frac{1}{3}\pi (2r)^2 (4r)$	8	r
Small cone	$\rho \frac{1}{3} \pi r^2 \times 2r$	1	$2r + \frac{2r}{4} = \frac{5r}{2}$
Frustum	$\rho \frac{1}{3}\pi \times 14r^3$	7	\overline{x}

Take moment about *X*:

$$8r - \frac{5r}{2} = 7\overline{x}$$
$$\therefore \overline{x} = \frac{11r}{14}$$

b i

Let G be the position of the centre of mass. Let S be the point an the plane vertically below G. Let X be the centre of the circular face with radius 2r and A be the point about which tilting would occur.

If SX < AX then the solid rests in equilibrium without toppling

Let SX = y.

As SX = 0.66r and AX = 2r

SX < AX and the solid rests without toppling

Then
$$\tan 40^\circ = \frac{y}{\frac{11r}{14}}$$

 $\therefore y = \frac{11r}{14} \tan 40^\circ = 0.66r \quad (2 \text{ s.f.})$

This time Y is vertically below G. Z is the centre of the circular face and B is the point about which toppling would occur.

If YZ > BZ then toppling occurs.

As YZ = 1.02r and BZ = r

YZ > BZ and toppling would occur.

Let
$$YZ = z$$

Then
$$\tan 40^\circ = \frac{z}{\frac{17r}{14}}$$

$$\therefore z = \frac{17r}{14} \tan 40^\circ = 1.02r$$

c

As the angle of slope is 40° limiting friction would imply $\mu = \tan 40^\circ$. No slipping implies $\mu \ge 0.839$ (3 s.f.) 6

Consider the cube in equilibrium, on the point of toppling, so R acts through the corner A. a

$$R(\rightarrow): P - F = 0 \therefore F = P$$

$$R(\uparrow): R - W = 0 \therefore R = W$$

$$\bigcirc M(A): P \times 4a = W \times 3a$$

$$\therefore P = \frac{3}{4}W$$

If equilibrium is broken by toppling $P = \frac{3}{4}W$, so $F = \frac{3}{4}W$

But $F < \mu R$

 $\therefore \frac{3}{4}W < \mu W$ so $\mu > \frac{3}{4}$ is the condition for toppling.

If however, $\mu < \frac{3}{4}$ then the cube will be on the point of slipping when $F = \mu R$ i.e. when $P = \mu W$ the cube will start to slip.

b Let R act at a point x from A.

$$R (\rightarrow) P - F = 0 \therefore P = F$$

$$R (\uparrow) R - W = 0 \therefore R = W$$

When the cube is about to slip: $F = \mu R$
 $\therefore P = \frac{1}{4}W$
 $\bigcirc M(A): P \times 4a + Rx = W \times 3a$ (substitute for P)
 $\therefore \frac{1}{4}W \times 4a + Rx = W \times 3a$ (substitute for R)
 $\therefore Wx = W \times 2a$
i.e. $x = 2a$

The required distance is 2a.

P)

- 7 a We first find the centre of mass of the composite body. Taking moments about the bottom face of body $B M_A (10+30) + M_B 15 = (M_A + M_B) \overline{y} \Rightarrow \overline{y} = \frac{5(8M_A + 3M_B)}{M_A + M_B} = \frac{5(8+3k)}{1+k}$ Taking moments about their common face $M_A 15 + M_B 10 = (M_A + M_B) \overline{x} \Rightarrow$ $\overline{x} = \frac{5(3M_A + 2M_B)}{M_A + M_B} = \frac{5(3+2k)}{1+k}$ Given that k = 5, $M_A = 20 \times 20 \times 30 \times \rho = 12 \times 10^3 \rho$ and $M_B = 20 \times 20 \times 30 \times 5\rho = 60 \times 10^3 \rho$, $\overline{y} = \frac{115}{6} \approx 19.2 \text{ cm}, \ \overline{x} = \frac{65}{6} \approx 10.8 \text{ cm}.$ The angle is $\tan \theta = \frac{20 - \overline{x}}{\overline{y}} = \frac{1 + 2k}{8 + 3k}$ $= \frac{11}{23} \approx 0.478 \Rightarrow \theta \approx 25.6^\circ$ (3 s.f.).
 - **b** We have that $\tan \theta = \frac{1+2k}{8+3k}$ For the cuboid *A* to topple, $\tan \theta = \frac{20-15}{10} = \frac{1}{2}$ Solving $\frac{1+2k}{8+3k} < \frac{1}{2} \Longrightarrow 0 < k < 6$
- 8 Slicing the cylinder into thin horizontal slices we can integrate the mass as $M = \int_0^l \pi r^2 \rho(x) dx$, where l = 1.5 m is the length of the cylinder, r = 0.25 m is the radius, and $\rho(x) = \cosh x \, \text{kg m}^{-3}$ is its mass density. Integrating

$$M = \int_{0}^{1.5} \pi 0.25^{2} \cosh x \, dx = \pi 0.25^{2} \left[\sinh x\right]_{0}^{1.5}$$

= $\pi 0.25^{2} \sinh 1.5 \approx 0.418$.
The centre of mass
$$M \,\overline{x} = \int_{0}^{1} \pi r^{2} x \rho(x) \, dx = \int_{0}^{1.5} \pi 0.25^{2} x \cosh x \, dx$$

= $\pi 0.25^{2} \left[\left[x \sinh x \right]_{0}^{1.5} - \int_{0}^{1.5} \sinh x \, dx \right]$
= $\pi 0.25^{2} \left[x \sinh x - \cosh x \right]_{0}^{1.5} \approx 0.3616$

 $\Rightarrow \overline{x} \approx 0.865 \text{ m (3 s.f.)}. \text{ The maximum angle is given by } \tan \theta = \frac{r}{\overline{x}} \approx 16.1^{\circ}.$

9 a

Shape	Mass	Mass ratios	Distance of centre of mass from <i>O</i>
Hemisphere	$\frac{2}{3}\pi\rho r^{3}$	2r	$h + \frac{3}{8}r$
Cylinder	$\pi ho r^2 h$	3 <i>h</i>	$\frac{h}{2}$
Composite solid	$\pi\rho r^2\left(\frac{2}{3}r+h\right)$	2r+3h	\overline{x}

$$\Im M: 2r\left(h+\frac{3}{8}r\right)+3h\times\frac{h}{2}=(2r+3h)\overline{x}$$
$$\therefore 2rh+\frac{3}{4}r^2+\frac{3}{2}h^2=(2r+3h)\overline{x}$$

Multiply both sides by 4

$$8rh + 3r^{2} + 6h^{2} = 4(2r + 3h)\overline{x}$$
$$\therefore \overline{x} = \frac{6h^{2} + 8hr + 3r^{2}}{4(3h + 2r)}$$

b When the solid is on the point of toppling the centre of mass *G* is vertically above point *A* as shown.

In
$$\Delta GOA$$
,
 $\angle AGO = \alpha$
 $OA = r$
and $OG = \frac{6(3r)^2 + 8(3r^2) + 3r^2}{4(9r + 2r)}$
(i.e. \overline{x} with $h = 3r$)
 $\therefore OG = \frac{81r^2}{44r} = \frac{81r}{44}$
 $\therefore \tan \alpha = \frac{r}{\frac{81}{44}r} = \frac{44}{81}$
 $\therefore \alpha = 29^\circ$ (nearest degree)

 $R(\nearrow)F - mg \sin \alpha = 0 \therefore F = mg \sin \alpha$ $R(\swarrow)R - mg \cos \alpha = 0 \therefore R = mg \cos \alpha$ The solid does not slip $\therefore F \leq \mu R$ i.e., $mg \sin \alpha \leq \mu mg \cos \alpha$ $\therefore \mu \geq \tan \alpha$ i.e.: $\mu > \frac{44}{81}$ if the solid did not slip before it toppled. [if $\mu = \frac{44}{81}$ it slips and topples at the same time.]

Shape	Mass	Mass ratio	Position of centre of mass – distance from <i>O</i>
Large cone	$\frac{1}{3}\pi\rho\left(2r\right)^{2}2h$	8	$\frac{2h}{4}$
Small cone	$\frac{1}{3}\pi\rho r^2h$	1	$h + \frac{h}{4}$
Frustum	$\frac{1}{3}\pi\rho\left(8r^2h-r^2h\right)$	7	\overline{x}

10 a Let the mass per unit volume be ρ .

The centre of the base is the point O.

The radius of the small cone is obtained by singular triangles.

$$\bigcirc MO: 8 \times \frac{2h}{4} - 1 \times \frac{5h}{4} = 7\overline{x}$$
$$\therefore \frac{11h}{4} = 7\overline{x}$$
$$i.e. \overline{x} = \frac{11}{28}h$$

10 b As
$$OG = \frac{11h}{28}$$
, $GX = h - \frac{11h}{28}$
$$= \frac{17h}{28}$$

From $\Delta S G X S$ and V X S shown:

$$\tan \theta = \frac{\frac{17h}{28}}{r} \text{ and } \tan \theta = \frac{r}{h}$$

Eliminating $r, h \tan \theta = \frac{\frac{17h}{28}}{\tan \theta}$
$$h \tan \theta = \frac{\frac{17h}{28}}{\tan \theta}$$
$$\therefore \tan^2 \theta = \frac{17}{28}$$

 $\therefore \theta = 38^{\circ}$ (nearest degree)

- **11 a** At the point of sliding, the frictional force $F = \mu R$, where R is the reaction force. Resolving forces in the direction normal to the plane R = Mg, and horizontally P = F. From this we can find that $P > \mu Mg$.
 - **b** Taking moments about the point of contact with the plane, when the cone is just about to tilt $Mgr = Ph \Longrightarrow P > \frac{r}{h}Mg = \frac{3}{8}Mg.$
 - **c** i The force required for the cone to tilt is greater than the one for it to slide. For $\mu = \frac{1}{4}$ the cone will slide.
 - ii For $\mu = \frac{1}{2}$ the cone will tilt.

iii For $\mu = \frac{3}{8}$ the cone will remain stationary, perfectly balanced between the opposing forces, as the force $P = \frac{3}{8}Mg$ is not sufficient to cause the cone to either tilt or topple, both of which require $P > \frac{3}{8}Mg$.

12 a Let the mass of the cylinder be M, height h, and radius r. Suppose the cylinder is about to topple. Taking moments about the highest point of the base O, $Ph \cos \alpha = Mgx$, where x is the shortest distance between the force Mg and the point O. We can find it using similar triangles

$$\tan \alpha = \frac{y}{h/2} = \frac{\sqrt{(y+r)^2 - x^2}}{x} \Rightarrow y = \frac{1}{2}h \tan \alpha = \frac{1}{2} \times 4 \times \frac{3}{4} = 1.5 \text{ cm, and } x = 3.6 \text{ cm. Also note that}$$
$$\tan \alpha = \frac{3}{4} \Rightarrow \sin \alpha = \frac{3}{5}, \cos \alpha = \frac{4}{5}. \text{ Thus } P = (\cos \alpha)^{-1} \frac{x}{h} Mg = \frac{5}{4} \times \frac{3.6}{4} \times 0.2 \times g = \frac{9}{40}g \text{ N.}$$

12 b Resolving forces horizontally to the plane (at the point of slipping) $P \cos \alpha = Mg \sin \alpha + \mu R$, and

vertically
$$R - P \sin \alpha = Mg \cos \alpha$$
. Hence $P = \frac{gM(3+4\mu)}{4-3\mu} = \frac{3}{10}g$ N.

c As $\frac{3}{10}g > \frac{9}{40}g$ the cylinder topples before it slides.

Challenge

a Let the mass per unit volume of the solids be ρ . Let *O* be the centre of the plane circular faces which coincide.

Shape	Mass	Ratio of masses	Distance of centre of mass from <i>O</i>
Cone	$\frac{1}{3}\pi\rho r^2h$	h	$\frac{h}{4}$
Hemisphere	$\frac{2}{3}\pi\rho r^{3}$	2r	$\frac{-3r}{8}$
Тоу	$\frac{1}{3}\pi\rho\left(r^2h+2r^3\right)$	h + 2r	\overline{x}
k	$\begin{pmatrix} 2n \end{pmatrix}$		

$$\mathcal{O}(h+2r)\overline{x} = h \times \frac{h}{4} + 2r\left(\frac{-3r}{8}\right)$$
$$= \frac{h^2}{4} - \frac{3r^2}{4}$$
$$\therefore \overline{x} = \frac{\left(h^2 - 3r^2\right)}{4\left(h+2r\right)}$$

- **b** i If $h > r\sqrt{3}$ then $\overline{x} > 0$ so the centre of mass is in the cone the cone will fall over.
 - ii If $h < r\sqrt{3}$ then $\overline{x} < 0$ so the centre of mass is in the hemisphere, the toy will return to vertical position.
 - iii If $h = r\sqrt{3}$, then $\overline{x} = 0$ so the centre of mass is on the join at point *O*. The toy will remain in equilibrium in its new position.