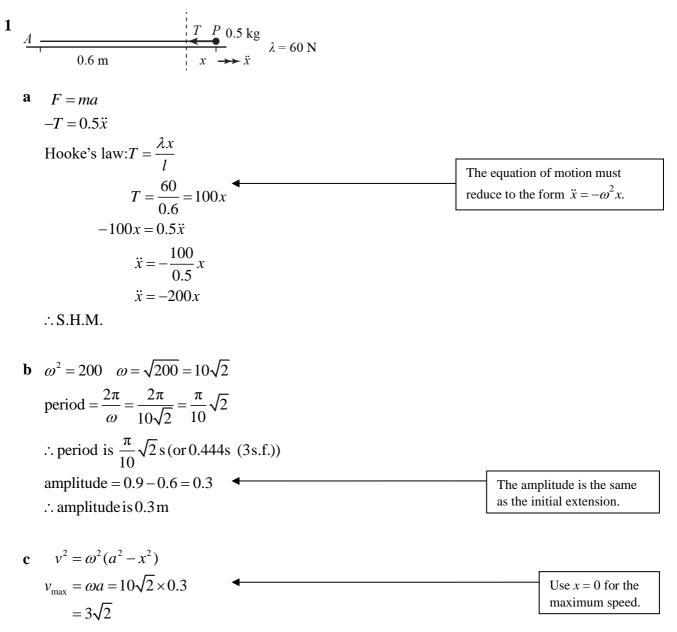
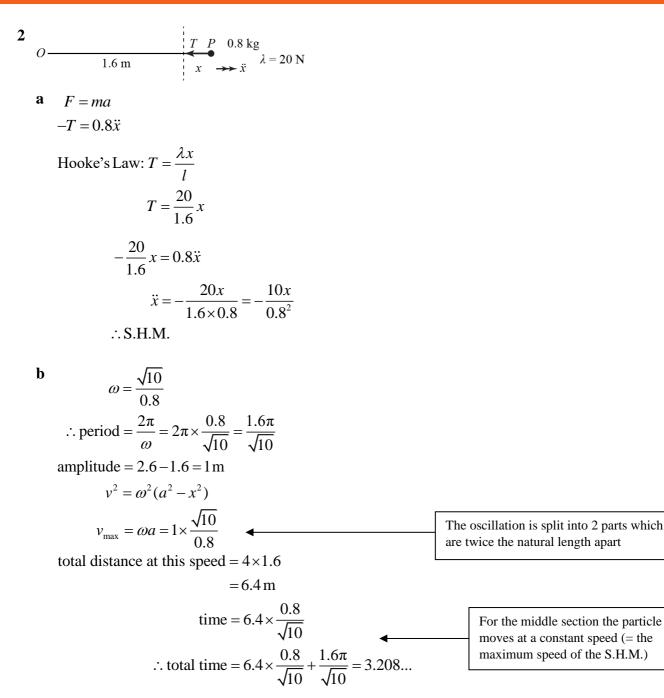
Dynamics 5D



The maximum speed is $3\sqrt{2} \text{ m s}^{-1}$ or 4.24 m s^{-1} (3 s.f.)



The total time is 3.21 s (3 s.f.)

3

a
$$F = ma$$

$$-T = 0.4\ddot{x}$$
Hooke's Law: $T = \frac{\lambda x}{l}$

$$T = \frac{2A}{l}$$

$$\frac{2A}{l} = -20x$$

$$\therefore -20x = 0.4\ddot{x}$$

$$\ddot{x} = -50x$$

$$\therefore S.H.M.$$
b For the impact $I = mv - mu$

$$1.8 = 0.4v$$

$$v = \frac{1.8}{0.4} = 4.5$$
This is the speed of *P* while the string is slack. It is also the maximum speed for the S.H.M.
period = $\frac{2\pi}{\omega} = \frac{2\pi}{5\sqrt{2}}$
The required time includes half a period.

$$\therefore$$
 time for half an oscillation = $\frac{\pi}{5\sqrt{2}}$
The required time includes half a period.

$$\therefore$$
 time at constant speed
$$= \frac{0.2}{4.5} = \frac{2}{45}$$

$$P \text{ travels } 0.2 \text{ m before the string before the string becomes taut.}$$
total time = $\frac{\pi}{5\sqrt{2}} + \frac{2}{45} = 0.4887...$
time is 0.489 s (3 s.f.)
c

$$v^{2} = \omega^{2}(a^{2} - x^{2})$$

$$v_{ww} = 4.5 \text{ ms}^{-1}$$

$$\therefore 4.5 = a\omega$$

$$a = \frac{4.5}{5\sqrt{2}}$$

$$AB = 1.2 + \frac{4.5}{5\sqrt{2}}$$

$$AB = 1.2 + \frac{4.5}{5\sqrt{2}}$$

Distance AB is 1.84 m (3 s.f.)

=1.836

4

$$O \xrightarrow{T} P = 0.8 \text{ kg}$$

 1.2 m $x \xrightarrow{P} \ddot{x} \lambda = 80 \text{ N}$

a
$$F = ma$$

 $-T = 0.8\ddot{x}$
Hooke's Law: $T = \frac{\lambda x}{l}$
 $T = \frac{80x}{1.2}$
 $0.8\ddot{x} = -\frac{80}{1.2}x$
 $\ddot{x} = -\frac{100}{1.2}x$

 \therefore SHM

b
$$\omega = \sqrt{\frac{100}{1.2}} = \frac{10}{\sqrt{1.2}}$$

period $= \frac{2\pi}{\omega} = \frac{2\pi}{10}\sqrt{1.2}$
 $= 0.6882...$

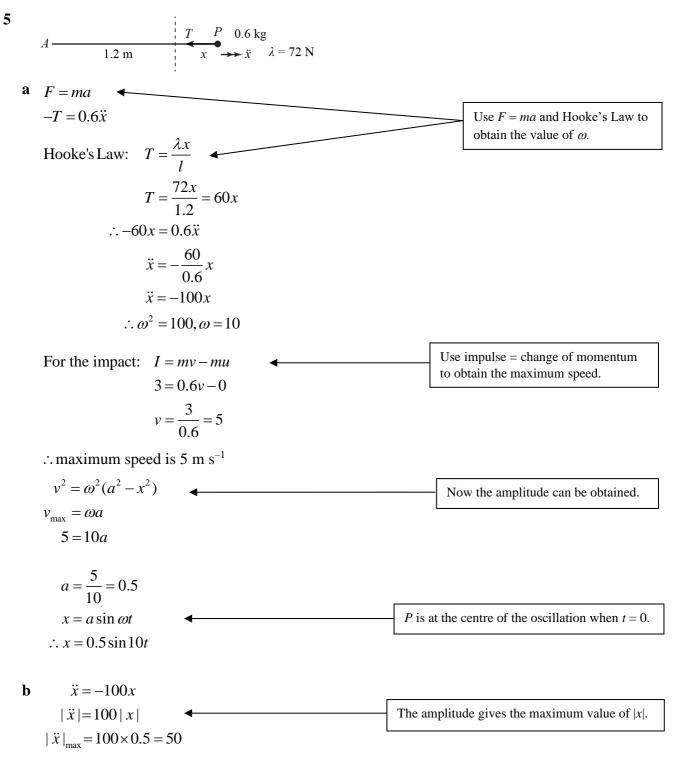
period is 0.688 s (3 s.f.) amplitude = 1.2 - 0.6 = 0.6 m

c
$$v^2 = \omega^2 (a^2 - x^2)$$

 $v_{\text{max}} = \omega a$
 $= \frac{10}{\sqrt{1.2}} \times 0.6$
 $= 5.477...$

The max speed is 5.48 m s⁻¹ (3 s.f.)

SolutionBank



The maximum magnitude of the acceleration 50 m s⁻².

5

6

b

$$O \xrightarrow{T} P 0.9 \text{ kg}$$

$$1.5 \text{ m} \qquad x \xrightarrow{\gamma} \ddot{x} \quad \lambda = 24 \text{ N}$$

a amplitude = (2-1.5) m = 0.5 m

energy; K.E. gained
$$= \frac{1}{2}mv^2 = \frac{1}{2} \times 0.9v^2$$

E.P.E. lost $= \frac{\lambda x^2}{2l} = \frac{24 \times 0.5^2}{2 \times 1.5}$
 $\frac{1}{2} \times 0.9v^2 = 24 \times \frac{0.5^2}{2 \times 1.5}$
 $v^2 = \frac{2 \times 24 \times 0.5^2}{0.9 \times 2 \times 1.5}$
 $v = 2.108...$

b can be solved by using conservation of energy or by S.H.M. methods, finding the maximum speed for the oscillation.

The speed is 2.11 m s^{$$-1$$} (3 s.f.)

c i Impact with the wall: Newton's law of impact : eu = v

$$\therefore v = \frac{3}{5} \times 2.108...$$
$$= 1.264...$$

 $\therefore \text{ maximum speed for the new oscillation is } 1.264 \text{ m s}^{-1}$ F = ma $-T = 0.9\ddot{x}$ Hooke's Law: $T = \frac{\lambda x}{l}$ $T = \frac{24}{1.5} x = 16x$ $\therefore -16x = 0.9\ddot{x}$ $\ddot{x} = -\frac{16}{0.9} x$ $\therefore \omega = \frac{4}{\sqrt{0.9}}$ period $= \frac{2\pi}{2\pi} = 2\pi \frac{\sqrt{0.9}}{1.490} = 1.490...$

$$\omega$$
 4 he period is 1.40s (2 s f)

The period is 1.49s (3 s.f.).

$$v^{2} = \omega^{2}(a^{2} - x^{2})$$
$$v_{\text{max}} = \omega a$$
$$1.264 = \frac{4}{\sqrt{0.9}}a$$
$$a = 1.264 \times \frac{\sqrt{0.9}}{4}$$
$$a = 0.2997$$

Now ω is known you can find the amplitude using $v^2 = \omega^2 (a^2 - x^2)$ with the maximum speed.

The amplitude is 0.300 m (3 s.f.)

7

$$T = \frac{P}{x} 2.5 \text{ kg}}{\lambda = 400 \text{ N}}$$
a $F = ma$
 $-T = 2.5\ddot{x}$
Hooke's Law: $T = \frac{\lambda x}{l}$
 $T = \frac{400x}{0.5} = 800x$
 $-800x = 2.5\ddot{x}$
 $\ddot{x} = -\frac{800}{2.5}x$
 $\ddot{x} = -320x$
 $\omega = \sqrt{320}$
period $= \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{320}} = 0.3512...$

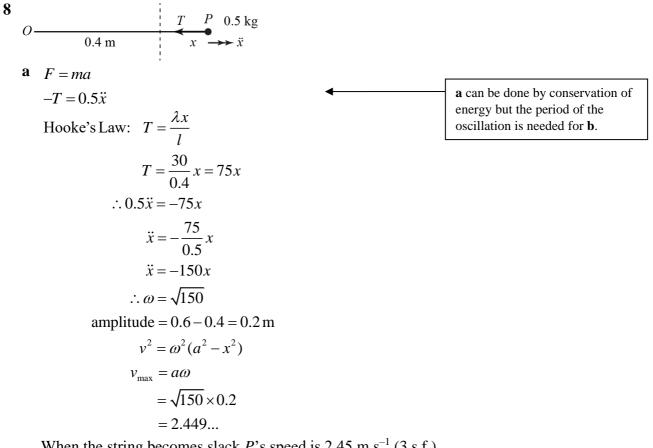
The period is 0.351 s (3 s.f.).

b amplitude = (50-42) cm = 0.08 m $v^2 = \omega^2 (a^2 - x^2)$ $v_{\text{max}} = \omega a$ = $\sqrt{320 \times 0.08}$

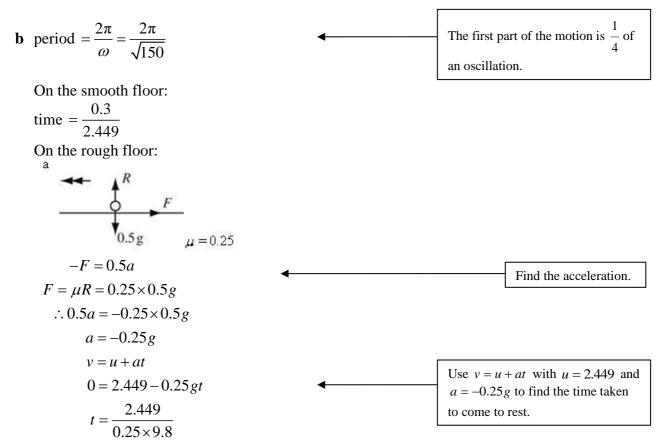
maximum K.E =
$$\frac{1}{2} \times 2.5 \times \left(\sqrt{320 \times 0.08}\right)^2$$

= 2.56

The maximum K.E. is 2.56 J.



When the string becomes slack *P*'s speed is 2.45 m s⁻¹ (3 s.f.).



© Pearson Education Ltd 2018. Copying permitted for purchasing institution only. This material is not copyright free.

total time = $\frac{1}{4} \times \frac{2\pi}{\sqrt{150}} + \frac{0.3}{2.449} + \frac{2.449}{0.25 \times 9.8}$

=1.250...

$$: T = 1.25 \text{ N}(3\text{ s.f.})$$

A $\underbrace{1.2 \text{ m}}_{1.2 \text{ m}} \underbrace{r_{0.4}^{1} \text{ kg}}_{1.3 \text{ m}} B_{\lambda = 12 \text{ N}}$

a $F = ma$
 $T_n - T_A = 0.4 \ddot{x}$

Hooke's Law: $T = \frac{\lambda x}{l}$
 AP : extension = $(0.8 + x)$
 $: T_A = \frac{12(0.8 - x)}{1.2} = 10(0.8 + x)$
 BP : extension = $(0.8 - x)$
 $: T_B = \frac{12(0.8 - x)}{1.2} = 10(0.8 - x)$
 $: 10(0.8 - x) - 10(0.8 + x) = 0.4 \ddot{x}$
 $-20x = 0.4 \ddot{x}$
 $\ddot{x} = -\frac{20}{0.4} x = -50x$
 $: P$ moves with S.H.M.
b $\omega^2 = 50$
amplitude = 0.6 m
 $v^2 = \omega^2 (a^2 - x^2)$
 $v^2_{mx} = \omega^2 a^2$
 $= 50 \times 0.6^2$
maximum K.E. $= \frac{1}{2} mv^2_{max}$
 $= \frac{1}{2} \times 0.4 \times 50 \times 0.6^2$

The maximum K.E. is 3.6 J.

= 3.6

10

$$A \xrightarrow{T_A P^{(m)} T_B} B \xrightarrow{T_B A = 3 mg}$$

 $x \xrightarrow{1.5 l} x \xrightarrow{1.5 l - x} l B \xrightarrow{A = 3 mg}$
The centre of the oscillation is at the mid-point of AB.

a
$$F = ma$$

 $T_B - T_A = m\ddot{x}$
Hooke's Law : $T = \frac{\lambda x}{l}$
extension = $1.5l + x$
 AP : $T_A = \frac{3mg(1.5l + x)}{l}$
 PB : extension = $1.5l - x$
 $T_B = \frac{3mg(1.5l - x)}{l}$
 $\therefore \frac{3mg(1.5l - x)}{l} - \frac{3mg(1.5l + x)}{l} = m\ddot{x}$
 $-\frac{6mgx}{l} = m\ddot{x}$
 $\ddot{x} = -\frac{6g}{l}x$

: S.H.M.

b
$$\omega^2 = \frac{6g}{l} \quad \omega^2 = \sqrt{\frac{6g}{l}}$$

period $= \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{l}{6g}}$

c Amplitude = 1.5l

d

$$v^{2} = \omega^{2}(a^{2} - x^{2})$$

$$AP = 3l \Longrightarrow x = \frac{1}{2}$$

$$\therefore v^{2} = \frac{6g}{l} \left(\left(\frac{3l}{2} \right)^{2} - \left(\frac{l}{2} \right)^{2} \right)$$

$$v^{2} = \frac{6g}{l} \left(\frac{9l^{2}}{4} - \frac{l^{2}}{4} \right)$$

$$v^{2} = \frac{6g}{l} \times \frac{8l^{2}}{4}$$

$$v^{2} = 12gl$$

When AP = 3l, P's speed is $\sqrt{12gl}$ (or $2\sqrt{3gl}$).

Further Mechanics 2

SolutionBank

11 a When *P* is in equilibrium:

$$AP = \frac{2}{5} \times 5 = 2 \text{ m}$$
$$BP = 3 \text{ m}$$

Natural lengths: AP = 1 m

$$BP = 1.5 \text{ m}$$

$$A \xrightarrow{[T_A P] T_B} T_B$$

$$T_A P \xrightarrow{[T_A P] T_B} T_B$$

$$F = ma$$

$$T_B - T_A = 0.5 \ddot{x}$$
Hooke's Law : $T = \frac{\lambda x}{l}$

$$AP: \text{ extension } = 1 + x$$

$$T_A = \frac{15(1 + x)}{1}$$

$$BP: \text{ extension } = 1.5 - x$$

$$T_B = \frac{15(1.5-x)}{1.5} = 10(1.5-x)$$

$$\therefore 10(1.5-x) - 15(1+x) = 0.5\ddot{x}$$

$$-25x = 0.5\ddot{x}$$

$$\ddot{x} = -50x$$

∴S.H.M.

period
$$=\frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{50}} = \frac{2\pi}{5\sqrt{2}} = \frac{\pi}{5}\sqrt{2}$$

b Amplitude = (3 - 2)m = 1 m.

Use the ratio condition to obtain the necessary lengths for the two parts of the string.