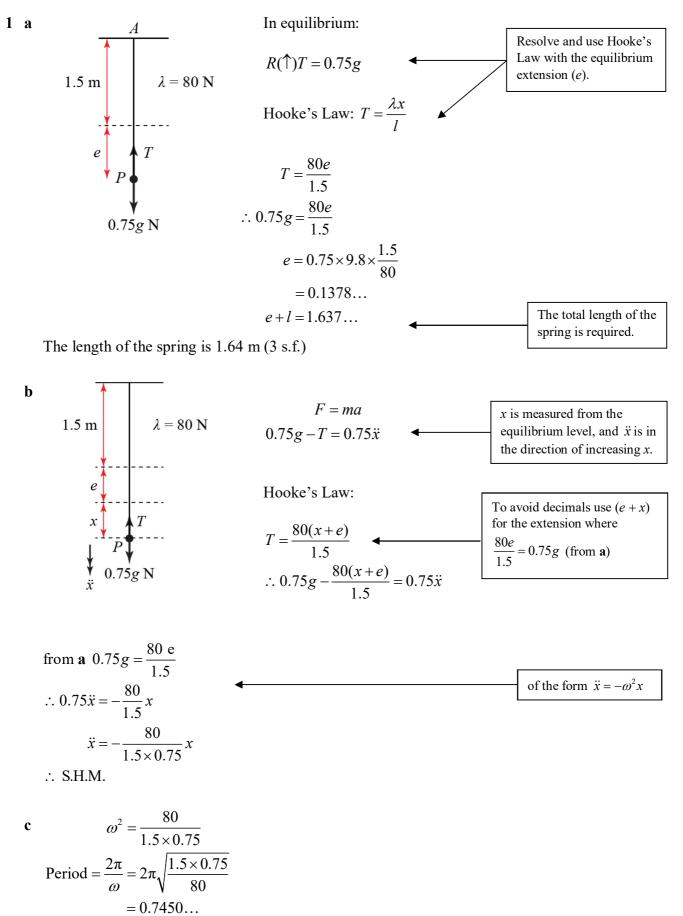
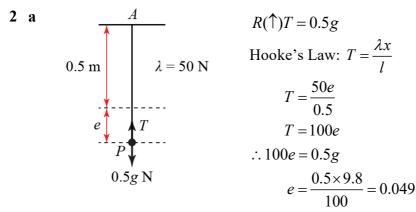
Dynamics 5E

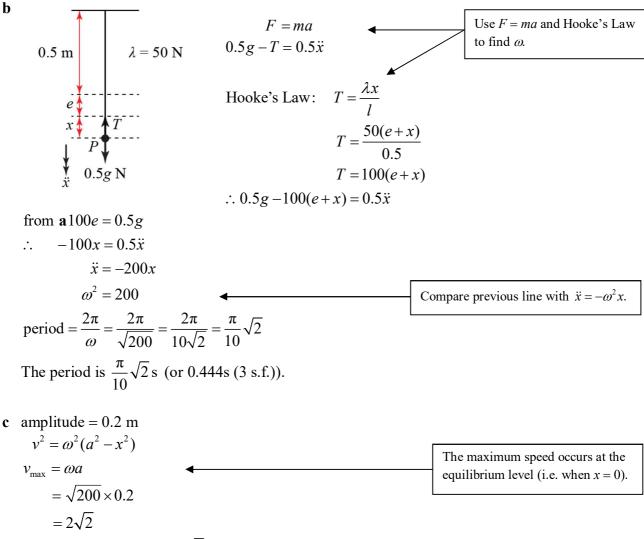


The period is 0.745s (3 s.f.)

1 d $v^2 = \omega^2 (a^2 - x^2)$ $2.5^2 = \frac{80}{1.5 \times 0.75} a^2$ $a^2 = \frac{2.5^2 \times 1.5 \times 0.75}{80}$ a = 0.2964...The amplitude is 0.296 m (3 s.f.)



The extension is 0.049 m (or 4.9 cm)



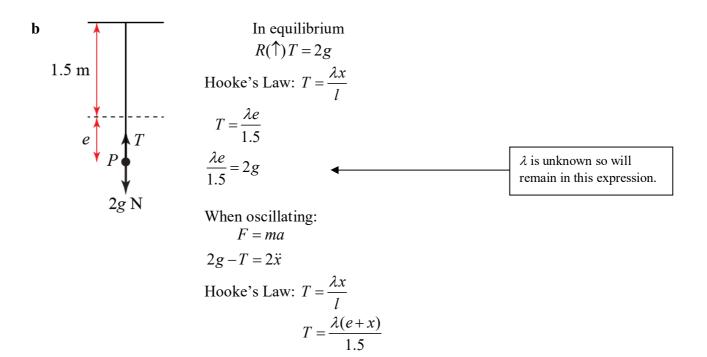
The maximum speed is $2\sqrt{2}$ ms⁻¹ (or 2.83 m s⁻¹ (3 s.f.)).

3 a For the impact: I = mv - mu

$$3 = 2v$$

v = 1.5

The speed immediately after the impact is 1.5 m s^{-1} .



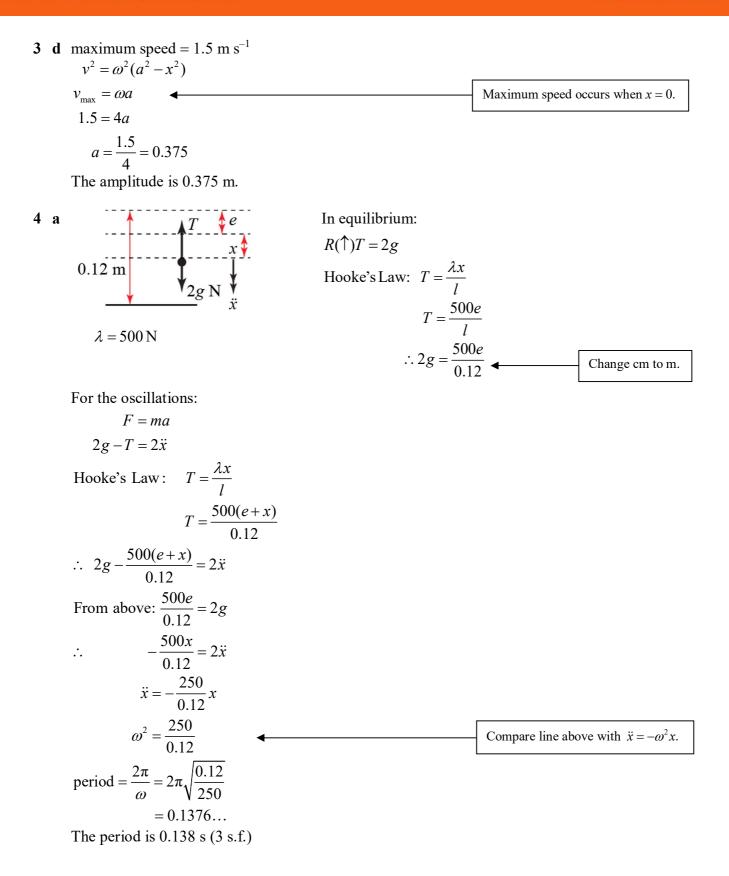
$$\therefore 2g - \frac{\lambda(e+x)}{1.5} = 2\ddot{x}$$

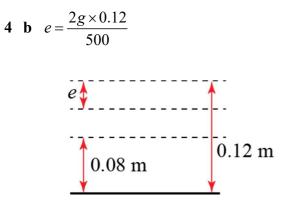
From above: $\frac{\lambda e}{1.5} = 2g$
$$\therefore -\frac{\lambda x}{1.5} = 2\ddot{x}$$

$$\ddot{x} = -\frac{\lambda}{3}x$$

as $\lambda > 0$, this is S.H.M.

c period $= \frac{2\pi}{\omega} = \frac{\pi}{2}$ $\therefore \quad \omega = 4$ From $\ddot{x} = -\frac{\lambda}{3}x, \ \omega^2 = \frac{\lambda}{3}$ $\therefore \frac{\lambda}{3} = 16$ $\lambda = 48$





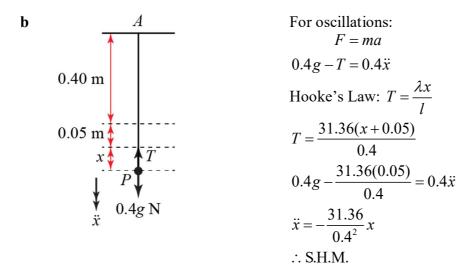
The maximum speed is 1.61 m s⁻¹ (3 s.f.).

5 a
A
1 n equilibrium:

$$R(\uparrow)T = 0.4g$$

Hooke's Law: $T = \frac{\lambda x}{l}$
 $T = \frac{\lambda 0.05}{0.4}$
 $C = 0.4g$
 $C = 0.4g$
 $C = 0.4g$
 $L = 0.$

The modulus of elasticity is 31.4 N (3 s.f.)



5 c From $\ddot{x} = -\frac{31.36}{0.4^2}x$ $\omega = \frac{\sqrt{31.36}}{0.4}$ period $= \frac{2\pi}{\omega} = 2\pi \times \frac{0.4}{\sqrt{31.36}} = 0.4487...$ The period is 0.449 s.

amplitude = 52 - 45 = 7 (cm)

The amplitude is 0.07 m.

$$\mathbf{d} \quad v^2 = \omega^2 (a^2 - x^2)$$
$$v_{\text{max}} = \omega a$$
$$= \frac{\sqrt{31.36}}{0.4} \times 0.07$$
$$= 0.98$$

The maximum speed is 0.98 m s^{-1} .

e 11 cm from the lowest point

$$\Rightarrow AP = 41 \text{ cm.}$$

$$\therefore x = -4 \text{ cm} = -0.04 \text{ m}$$

$$x = a \cos \omega t$$

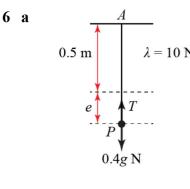
$$-0.04 = 0.07 \cos \omega t$$

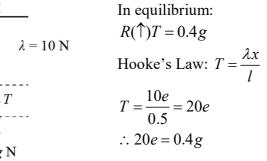
$$\omega t = \cos^{-1} \left(-\frac{0.04}{0.07} \right) = \cos^{-1} \left(-\frac{4}{7} \right)$$

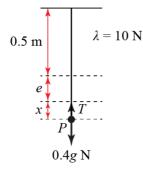
$$t = \frac{1}{\omega} \cos^{-1} \left(-\frac{4}{7} \right) = \frac{0.4}{\sqrt{31.36}} \cos^{-1} \left(-\frac{4}{7} \right)$$

$$= 0.1556 \dots$$

P takes 0.156s to rise 11 cm (3 s.f.).







For the oscillations:

$$F = ma$$

 $0.4g - T = 0.4\ddot{x}$
Hooke's Law: $T = \frac{\lambda x}{l}$
 $T = \frac{10(e+x)}{0.5}$
 $\therefore 0.4g - \frac{10(e+x)}{0.5} = 0.4\ddot{x}$

From above $0.4g = \frac{10e}{0.5}$ $\therefore \qquad -\frac{10x}{0.5} = 0.4\ddot{x}$ $\ddot{x} = -\frac{20x}{0.4} = -50x$

$$\therefore$$
 S.H.M. with $\omega^2 = 50$

amplitude = 0.2 m $x = a \cos \omega t$ $x = 0.2 \cos \sqrt{50}t$

String becomes slack when x = -e

$$-\frac{0.4g}{20} = 0.2 \cos \sqrt{50}t$$
$$\cos \sqrt{50}t = -\frac{2g}{20} = -\frac{g}{10} = -0.98$$
$$\sqrt{50}t = \cos^{-1}(-0.98)$$
$$t = \frac{1}{\sqrt{50}} \cos^{-1}(-0.98)$$
$$t = 0.4159$$

The string becomes slack after 0.416s (3 s.f.)

6 b The velocity of *P* is given by $v^2 = \omega^2 (a^2 - x^2)$

where $\omega^2 = 50$, a = 0.2 and x = 0.196

Therefore at the instant the string becomes slack

$$v^2 = 50(0.2^2 - 0.196^2)$$

 $v = 0.2814... \text{ m s}^{-1}$

At the instant the string becomes slack, the particle is no longer moving under SHM but under gravity. To find the time taken for P to pass through this point again use

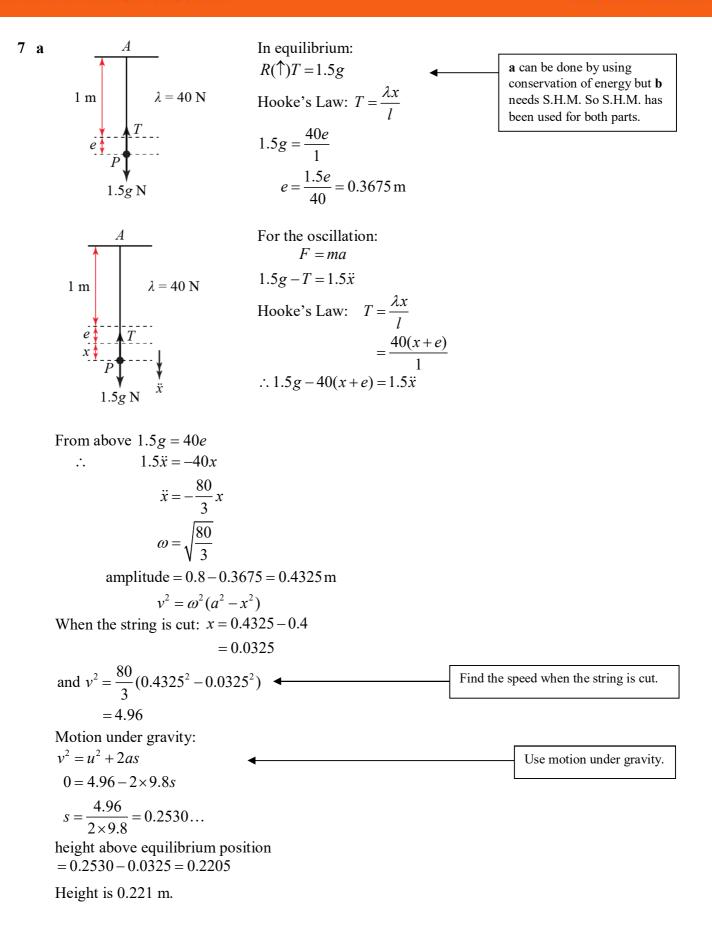
$$v = u + at$$

with v = -0.2814, u = 0.2814 and a = -9.8

-0.2814 = 0.2814 - 9.8t

t = 0.5742... s

So the time taken for the string to become taut again is 0.574 s (3 s.f.)



7 b For S.H.M.

$$x = 0.4325 \cos \sqrt{\frac{80}{3}}t$$
$$x = 0.0325 \ 0.0325 = 0.4325 \cos \sqrt{\frac{80}{3}}t$$
$$\cos \sqrt{\frac{80}{3}}t = \frac{0.0325}{0.4325}$$
$$t = \sqrt{\frac{3}{80}} \cos^{-1}\left(\frac{0.0325}{0.4325}\right)$$
$$= 0.2896$$

 $x = a \cos \omega t$

4

Motion under gravity:

$$v = u + at$$

$$O = \sqrt{4.96} - 9.8t$$

$$t = \frac{\sqrt{4.96}}{9.8}$$

total time =
$$0.2896... + \frac{\sqrt{4.96}}{9.8} = 0.5168...$$

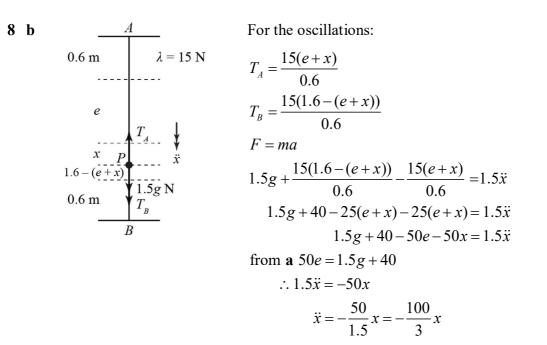
The time taken to reach the highest point is 0.517s (3 s.f.)

8 a
A
In equilibrium
0.6 m

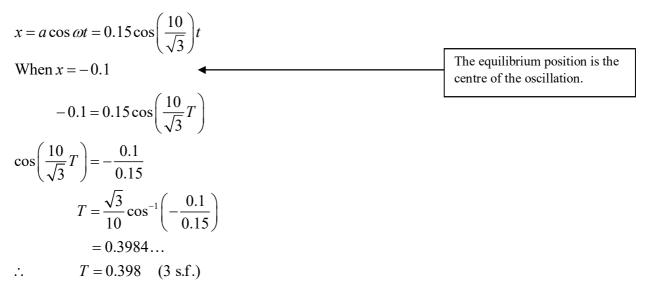
$$\lambda = 15$$
 N
 $R(\uparrow)T_A = 1.5g + T_B$
Hooke's Law:
 $T_A = \frac{1}{1.5g}$ N
 $T = \frac{\lambda x}{l}$
 $T_A = \frac{15e}{0.6} = 25e$
 $T_B = \frac{15(1.6-e)}{0.6} = 40 - 25e$
 $\therefore 25e = 1.5g + 40 - 25e$
 $50e = 1.5g + 40$
 $e = \frac{1}{50}(1.5g + 40) = 1.094$

In equilibrium, AP = 1.69 m (3 s.f.)

Particle starts from an end-point.



- \therefore *P* moves with S.H.M.
- **c** amplitude = 0.15 m



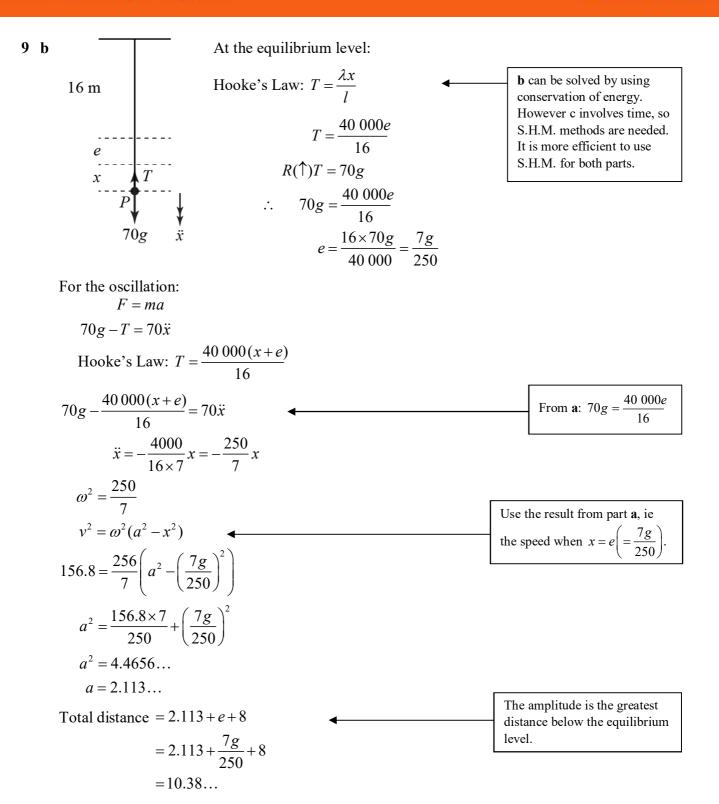
9 a Until rope is taut:

$$v^{2} = u^{2} + 2as$$

$$v^{2} = 0 + 2 \times 9.8 \times 8$$

$$v = 12.52...$$
Climber falling freely under gravity.

When the rope becomes taut the climber's speed is 12.5 m s^{-1} (3 s.f.)



The total distance fallen is 10.4 m (3 s.f.)

9 c $x = a \cos \omega t$	
$x = 2.113 \cos \sqrt{\frac{250}{7}t}$	Because of the symmetry of S.H.M. there are several methods available for c .
When $x = e$	
$\frac{7g}{250} = 2.113 \cos \sqrt{\frac{250}{7}}t$ $t = \sqrt{\frac{7}{250}} \cos^{-1} \left(\frac{7 \times 9.8}{250 \times 2.113}\right)$	This method assumes the oscillation is complete and finds the time from the highest point $(x = a)$ to the equilibrium level (x = e). This time will be subtracted from half the period. So it does not matter that this part of the oscillation does not exist.
period = $\frac{2\pi}{\omega} = 2\pi \sqrt{\frac{7}{250}}$	
Time while the rope is taut:	
$=\frac{2\pi}{2}\sqrt{\frac{7}{250}}-\sqrt{\frac{7}{250}}\cos^{-1}\left(\frac{7\times9.8}{250\times2.113}\right)$	 Time from highest point to lowest point of a complete oscillation is half the period. Subtract the time for the
= 0.2846	missing part (before the rope is taut) to obtain the time while the rope is taut.
While moving under gravity:	The time before the rope
$s = ut + \frac{1}{2}at^2$	becomes taut is also needed.
$8 = \frac{1}{2} \times 9.8t^2$	
$t^2 = \frac{16}{9.8}$	
total time = $\frac{4}{\sqrt{9.8}} + 0.2846$	

=1.562... The total time is 1.56 s (3 s.f).

Challenge

Particle P moves with SHM, time period

$$T = 2\pi \sqrt{\frac{ml}{\lambda}} = 2\pi \sqrt{\frac{ml}{5mg}}$$
$$= 2\pi \sqrt{\frac{l}{5g}}$$

Particles P and Q together move with SHM,

time period
$$3T = 6\pi \sqrt{\frac{l}{5g}}$$

Also $3T = 2\pi \sqrt{\frac{(m+km)l}{5mg}}$
 $= 2\pi \sqrt{\frac{l(1+k)}{5g}}$
So $6\pi \sqrt{\frac{l}{5g}} = 2\pi \sqrt{\frac{l(1+k)}{5g}}$
 $3\sqrt{l} = 2\sqrt{l(1+k)}$
 $9l = 4l(1+k)$
 $9 = 4+4k$
 $k = \frac{5}{4}$