AS Level Exam-style Practice Paper

1 a
$$a = \frac{dv}{dt} = \frac{144 - v^2}{48} \text{ ms}^{-2}$$

$$\frac{1}{144 - v^2} \frac{dv}{dt} = \frac{1}{48}$$

$$\int \frac{1}{144 - v^2} dv = \int \frac{1}{48} dt$$

Rearranging gives:

$$\frac{1}{144 - v^2} = \frac{1}{(12 + v)(12 - v)} = \frac{1}{24} \left(\frac{1}{12 + v} + \frac{1}{12 - v} \right)$$
So
$$\frac{1}{24} \int \frac{1}{12 + v} + \frac{1}{12 - v} dv = \int \frac{1}{48} dt$$

$$\frac{1}{24} \ln (12 + v) - \frac{1}{24} \ln (12 - v) = \frac{t}{48} + C$$

$$\frac{1}{24} \ln \left(\frac{12 + v}{12 - v} \right) = \frac{t}{48} + C$$

$$\ln \left(\frac{12 + v}{12 - v} \right) = \frac{t}{2} + 24C$$

$$\left(\frac{12 + v}{12 - v} \right) = e^{\frac{t}{2} + 24C} = De^{\frac{t}{2}} \quad \text{where } D = e^{24C}$$

When
$$t = 0$$
 s, $v = 0$ ms⁻¹, so $\frac{12}{12} = De^0 \Rightarrow D = 1$
So $\left(\frac{12+v}{12-v}\right) = e^{\frac{t}{2}}$
 $12+v = 12e^{\frac{t}{2}} - ve^{\frac{t}{2}}$
 $v(e^{\frac{t}{2}}-1) = 12(e^{\frac{t}{2}}-1)$
 $v = \frac{12(e^{\frac{t}{2}}-1)}{e^{\frac{t}{2}}+1}$

b For all real t, $e^{\frac{t}{2}} + 1 > e^{\frac{t}{2}} - 1$

Therefore
$$\frac{e^{\frac{t}{2}}-1}{e^{\frac{t}{2}}+1} < 1$$
 and $\left| \frac{12(e^{\frac{t}{2}}-1)}{e^{\frac{t}{2}}+1} \right| < 12$

So the speed of the particle cannot be greater than $12\,\mathrm{m}\,\mathrm{s}^{-1}$

2 a Let the tension in the string be T, the normal reaction between P and the table be R and the angular speed be $\omega = \sqrt{\frac{kg}{4a}}$

Resolving horizontally:

R(\leftarrow): $T\cos 60^\circ = ma = m\omega^2 r$ using F = ma and where r is the radius of the circular motion By geometry, $r = 2a\cos 60^\circ$ so substituting for r and ω this gives:

$$T\cos 60^\circ = m \times \frac{kg}{4a} \times 2a\cos 60^\circ$$

$$T = \frac{mkg}{2}$$
 as required

b Resolving vertically:

$$R(\uparrow)$$
: $T\sin 60^\circ + R = mg$

$$\Rightarrow R = mg - \left(\frac{mkg}{2} \times \frac{\sqrt{3}}{2}\right) = mg\left(1 - \frac{\sqrt{3}k}{4}\right)$$

c For the particle to remain in contact with the table, R > 0. Therefore

$$1 - \frac{\sqrt{3}k}{4} > 0$$

$$\frac{\sqrt{3}k}{4} < 1$$

$$\sqrt{3}k < 4$$

$$k < \frac{4}{\sqrt{3}}$$

2 d Let the new tension in the string be T', the angle the string now makes with the horizontal be θ , and the angular speed be $\omega' = \sqrt{\frac{3g}{a}}$

So
$$QO = 2a\sin 60^\circ = \sqrt{3}a$$
 and $QX = 2a\sin\theta$

Resolving horizontally:

R(
$$\leftarrow$$
): $T'\cos\theta = m\omega^2 r = m \times \frac{3g}{a} \times 2a\cos\theta$
 $\Rightarrow T' = 6mg$

Resolving vertically:

 $T' \sin \theta = mg$, so $6mg \sin \theta = mg$ substituting for T'

$$\Rightarrow \sin \theta = \frac{1}{6}$$

Substituting into $QX = 2a \sin \theta$ gives $QX = \frac{a}{3}$

Therefore $QX:QO = \frac{a}{3}:\sqrt{3}a = 1:3\sqrt{3}$ as required

3 a The rods are uniform, so the centre of mass of each rod is at its midpoint. The particles are treated as point masses.

Let \overline{x} be the centre of mass of the loaded framework is from AD and \overline{y} the centre of mass of the loaded framework is 3.25a from AB. Then using $\sum m_i r_i = r \sum m_i$, taking A as the origin, AB and AD as x- and y-axes respectively, and working round the figure in the order: AB, B, BC, C, CD, DA:

$$5m\binom{2.5a}{0} + 2m\binom{5a}{0} + 2m\binom{5a}{0} + 4m\binom{5a}{2a} + 5m\binom{2.5a}{2a} + 2m\binom{0}{a} = (5+2+2+4+5+2)m\binom{\overline{x}}{\overline{y}}$$

$$\binom{12.5a}{0} + \binom{10a}{0} + \binom{10a}{2a} + \binom{20a}{8a} + \binom{12.5a}{10a} + \binom{0}{2a} = 20\binom{\overline{x}}{\overline{y}}$$

$$\binom{65a}{22a} = 20\binom{\overline{x}}{\overline{y}}$$

So $\overline{x} = \frac{65a}{20} = 3.25a$ and $\overline{y} = \frac{65a}{20} = 1.1a$ The centre of mass of the framework lies:

- i The centre of mass of the loaded framework is 1.1a from AB.
- ii The centre of mass of the loaded framework is 3.25a from AD.

4

3 b Let the distance AP be x.

Treating the existing framework as a single object, taking the same axes as before and letting the centre of mass of the loaded framework including the rod PQ:

$$20m \binom{3.25a}{1.1a} + 10m \binom{x}{a} = 30m \binom{2.5a}{z}$$
$$\binom{65a + 10x}{32a} = \binom{75a}{30z}$$
$$10x = 75a - 65a$$
$$x = a$$

The distance AP is a

c Using part **b**, the distance from AB to the centre of mass also changes when PQ is added.

$$\binom{65a+10x}{32a} = \binom{75a}{30z}$$
$$32a = 30z$$
$$z = \frac{32a}{30} = \frac{16a}{15}$$

The framework therefore hangs with is centre of mass directly below D and CD making an angle of θ with the vertical.

So
$$\tan \theta = \frac{2 - \frac{16}{15}}{2.5} = \frac{2}{5} \times \frac{14}{15} = \frac{28}{75}$$

 $\Rightarrow \theta = 20.5^{\circ} (3 \text{ s.f.})$

The rod DC makes an angle of 20.5° (to 3 s.f.) with the vertical.

d The assumption that the rods are uniform allows the system to be modelled by assuming that the entire weight of each rod acts through its midpoint.