Number theory 1B

- 1 a $7 | 7 \Longrightarrow \gcd(7,7) = 7$
 - **b** $100 = 5 \times 20 \Longrightarrow \gcd(100, 20) = 20$
 - **c** $15 = 3 \times 5$ and $18 = 2 \times 3^2 \Longrightarrow \gcd(15, 18) = 3$
- 2 If gcd(p, 42) = 6 and p is a non-negative integer, then p can be any multiple of 6 that is not divisible by 42, for instance p can be 6, 12, 18, ...
- **3** a $78 = 2 \times 32 + 14$ $32 = 2 \times 14 + 4$ $14 = 3 \times 4 + 2$ $4 = 2 \times 2 + 0$ So gcd(32,78) = 2**b** $104 = 1 \times 91 + 13$ $91 = 7 \times 13 + 0$ So gcd(91,104) = 13c $172 = 2 \times 64 + 44$ $64 = 1 \times 44 + 20$ $44 = 2 \times 20 + 4$ $20 = 5 \times 4 + 0$ So gcd(172, 64) = 4**d** $167 = 1 \times 117 + 50$ $117 = 2 \times 50 + 17$ $50 = 2 \times 17 + 16$ $17 = 1 \times 16 + 1$ $16 = 1 \times 16 + 0$ So gcd(167,117) = 1e $-323 = -2 \times 221 + 119$ $221 = 1 \times 119 + 102$ $119 = 1 \times 102 + 17$ $102 = 6 \times 17 + 0$ So gcd(-323,221) = 17**f** $1292 = 1 \times 884 + 408$ $884 = 2 \times 408 + 68$ $408 = 6 \times 68 + 0$ So gcd(1292,884) = 68

- 4 $910 = 6 \times 143 + 52$ $143 = 2 \times 52 + 39$ $52 = 1 \times 39 + 13$ $39 = 3 \times 13 + 0$ So highest common factor is 13
- 5 a $1050 = 4 \times 222 + 162$ $222 = 1 \times 162 + 60$ $162 = 2 \times 60 + 42$ $60 = 1 \times 42 + 18$ $42 = 2 \times 18 + 6$ $18 = 3 \times 6 + 0$ So gcd(222,1050) = 6
 - **b** $\frac{222}{1050} = \frac{6 \times 37}{6 \times 175} = \frac{37}{175}$
- 6 a From question 3a, gcd(32, 78) = 2. Working backwards through the steps of the Euclidean algorithm from the solution to question 3a gives:

$$2 = 14 - 3(4)$$

= 14 - 3(32 - (2(14)))
= 7(14) - 3(32)
= 7(78 - 2(32)) - 3(32)
= -17(32) + 7(78)
So x = -17, y = 7

Note that x = 22, y = -9 also satisfies 32x + 78y = 2

b From question **3b**, gcd(91, 104) = 13. Working backwards through the steps of the Euclidean algorithm from the solution to question **3b** gives:

13 = 104 - 1(91)= -1(91) + 1(104) So x = -1, y = 1

SolutionBank

Further Pure Mathematics Book 2

6 c $12378 = 4 \times 3054 + 162$

 $3054 = 18 \times 162 + 138$ $162 = 1 \times 138 + 24$ $138 = 5 \times 24 + 18$ $24 = 1 \times 18 + 6$ $18 = 3 \times 6 + 0$ So gcd (12 378, 3054) = 6

Working backwards through the steps of the Euclidean algorithm gives:

$$6 = 24 - 1(18)$$

= 24 - (138 - 5(24))
= 6(24) - 1(138)
= 6(162 - 1(138)) - 1(138)
= 6(162) - 7(138)
= 6(162) - 7(3054 - 18(162))
= 132(162) - 7(3054)
= 132(12378 - 4(3054)) - 7(3054)
= 132(12378) - 535(3054)
So x = 132, y = -535

d
$$272 = -2 \times (-119) + 34$$

 $-119 = -4 \times 34 + 17$
 $34 = 2 \times 17 + 0$
So gcd $(-119, 272) = 17$

Working backwards through the steps of the Euclidean algorithm gives:

16 = -119 + 4(34)= -119 + 4(272 + 2(-119)) = 9(-119) + 4(272) So x = 9, y = 4 6 e $2378 = 1 \times 1769 + 609$ $1769 = 2 \times 609 + 551$ $609 = 1 \times 551 + 58$ $551 = 9 \times 58 + 29$ $58 = 2 \times 29 + 0$ So gcd (2378,1769) = 29

Working backwards through the steps of the Euclidean algorithm gives:

29 = 551 - 9(58)= 551 - 9(609 - 551) = -9(609) + 10(551) = -9(609) + 10(1769 - 2(609)) = -29(609) + 10(1769) = -29(2378 - 1769) + 10(1769) = -29(2378) + 39(1769) So x = -29, y = 39

f
$$2581 = -1 \times (-2059) + 522$$

 $-2059 = -4 \times 522 + 29$
 $522 = 18 \times 29 + 0$
So gcd $(-2059, 2581) = 29$

Working backwards through the steps of the Euclidean algorithm gives:

$$29 = 1(-2059) + 4(522)$$

= 1(-2059) + 4(2581 + 1(-2059))
= 5(-2059) + 4(2581)
So x = 5, y = 4

7 a $39 = 2 \times 16 + 7$ $16 = 2 \times 7 + 2$ $7 = 3 \times 2 + 1$ So gcd(39,16) = 1, hence 39 and 16 are relatively prime.

b Working backwards:

$$1 = 1(7) - 3(2)$$

= 1(7) - 3(16 - 2(7))
= 7(7) - 3(16)
= 7(39 - 2(16)) - 3(16)
= 7(39) - 17(16)
So $p = 7, q = -17$

Further Pure Mathematics Book 2

8 $170 = 8 \times 21 + 2$ $21 = 10 \times 2 + 1$ So gcd(170,21) = 1Working backwards: 1 = 1(21) - 10(2)=1(21)-10(170-8(21))= -10(170) + 81(21)So a = -10, b = 81**9** a $172 = 8 \times 20 + 12$ $20 = 1 \times 12 + 8$ $12 = 1 \times 8 + 4$ $8 = 2 \times 4 + 0$ So gcd(172, 20) = 4Working backwards: 4 = 1(12) - 1(8)= 1(12) - (20 - 12)= 2(12) - 1(20)

= 2(172 - 8(20)) - (20)= 2(172) - 17(20)

- So x = 2, y = -17
- **b** $2 \times 172 17 \times 20 = 4 \Rightarrow 2 \times 172 \times 25 17 \times 20 \times 25 = 4 \times 25 \Rightarrow (50)172 + (-425)20 = 100$ Therefore solutions to 172x + 20y = 100 are x = 50, y = -425.

10 Dividing both sides by 3 gives 33a + 115b = 100

Finding the greatest common divisor of 33 and 155: $115 = 3 \times 33 + 16$ $33 = 2 \times 16 + 1$ $16 = 16 \times 1 + 0$ So gcd(33,115) = 1 Working backwards: 1 = 33 - 2(16) = 33 - 2(115 - 3(33)) = 7(33) - 2(115)Hence $7 \times 33 - 2 \times 115 = 1 \Rightarrow 700 \times 33 - 200 \times 115 = 100$, and so a = 700, b = -200.

© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free.

11 a f(1) = 11, g(1) = 7, hence gcd(f(1),g(1)) = 1 because the numbers 11 and 7 are both prime.

- **b** $8n+3=1 \times (5n+2)+(3n+1)$ $5n+2=1 \times (3n+1)+(2n+1)$ $3n+1=1 \times (2n+1)+n$ $2n+1=2 \times (n)+1$ So gcd(8n+3,5n+2) = gcd(f(n),g(n)) = 1So f(n) and g(n) are relatively prime for all $n \in \mathbb{Z}^+$
- **12 a** Let gcd(a, a + x) = d, then there exist $m, n \in \mathbb{Z}$ such that a = md and a + x = ndSo x = (n - m)d. As $n - m \in \mathbb{Z}$, $d \mid x$ so $gcd(a, a + x) \mid x$.
 - **b** let x = 1, then from part **a** gcd(a, a+1)|1. As 1 is only divisible by 1, this gives gcd(a, a+1) = 1. Therefore any two consecutive integers are relatively prime.

13 a
$$63 = -2 \times (-23) + 17$$

 $-23 = -2 \times 17 + 11$ $17 = 1 \times 11 + 6$ $11 = 1 \times 6 + 5$ $6 = 1 \times 5 + 1$ So gcd(63, -23) = 1

b Working backwards:

Working backwards:

$$1=6-5$$

$$=6-(11-6)$$

$$=2(6)-11$$

$$=2(17-11)-11$$

$$=2(17)-3(11)$$

$$=2(17)-3(-23+2(17))$$

$$=-4(17)-3(-23)$$

$$=-4(63+2(-23))-3(-23)$$

$$=-4(63+2(-23))-3(-23)$$
Hence $-4 \times 63 + 11 \times 23 = 1 \Rightarrow 28 \times 63 - 77 \times 23 = -7$, and so $x_0 = 28$, $y_0 = 77$.

$$c \quad 63x - 23y = 63(x_0 - 23t) - 23(y_0 - 63t) = 63(28 - 23t) - 23(77 - 63t) = 28 \times 63 - 77 \times 23 - (63 \times 23)t + (63 \times 23)t = 28 \times 63 - 77 \times 23 = -7$$
 (from part **a**)

So x = 28 - 23t and y = 77 - 63t is a solution to 63x - 23y = -7 for any $t \in \mathbb{Z}$

d x = 28 - 23t and y = 77 - 63t.

As *t* is an integer, for all $t \le 1$ both *x* and *y* are positive and for all $t \ge 2$ both *x* and *y* are negative. So *xy* will always be positive for all $t \in \mathbb{Z}$. Hence there is no *t* such that $xy \le 0$.

Challenge

- 1 If one or both of a and b are zero, gcd(a,b) = gcd(a+bc,b) is true.
 Suppose that a and b are non-zero.
 Then gcd(a,b) | a,b,a+bc and therefore gcd(a,b) ≤ gcd(a+bc,b)
 Similarly, gcd(a+bc,b) | a+bc,b and a = (a+bc)-c×b, so gcd(a+bc,b) ≤ gcd(a,b)
 Hence gcd(a,b) = gcd(a+bc,b)
- 2 $a,b,d,x,y,z \in \mathbb{Z}$, and gcd(a,b) = d, so d > 0Given z = ax + by, $d \mid a, d \mid b \Rightarrow d \mid z$, and therefore $z \ge d$