Number theory 1E

- 1 a $20 \equiv 2 \pmod{9}$, so least residue is 2
 - **b** $7 \equiv 1 \pmod{2}$, so least residue is 1
 - c $120 \equiv 0 \pmod{15}$, so least residue is 0
 - **d** $91 \equiv 11 \pmod{20}$, so least residue is 11
- **2 a** $30 = 4 \times 7 + 2 \Rightarrow x \equiv 2 \pmod{7}$
 - **b** $69 = 7 \times 9 + 6 \Rightarrow x \equiv 6 \pmod{9}$
 - \mathbf{c} $-60 = -10 \times 6 \Rightarrow x \equiv 0 \pmod{6}$
 - $\mathbf{d} \quad -63 = -6 \times 11 + 3 \Rightarrow x \equiv 3 \pmod{11}$
 - e $-38 = -3 \times 17 + 13 \implies x \equiv 13 \pmod{17}$
 - \mathbf{f} $x \equiv 3 2 \equiv 1 \pmod{9}$
 - $\mathbf{g} \quad x \equiv 21 5 \equiv 16 \equiv 7 \pmod{9}$
 - **h** $x \equiv 50 + 3 \equiv 4 \times 11 + 9 \equiv 9 \pmod{11}$
- 3 Using $ka \equiv kb \pmod{m}$ and gcd(k,m) = d, then $a \equiv b \pmod{\frac{m}{d}}$ $27n \equiv 81 \pmod{15} \Rightarrow 27n \equiv 27 \times 3 \pmod{15}$ and $\gcd(27,15) = 3$

So
$$n \equiv 3 \pmod{\frac{15}{3}} \equiv 3 \pmod{5}$$

4 a $91 = 4 \times 20 + 11$

$$20 = 1 \times 11 + 9$$

$$11 = 1 \times 9 + 2$$

$$9 = 4 \times 2 + 1$$

$$2 = 2 \times 1 + 0$$

- So gcd(91,20) = 1
- **b** $91n \equiv 455 \pmod{20} \Rightarrow 91n \equiv 91 \times 5 \pmod{20}$ As gcd(91,20) = 1, using the division (cancelling) laws $n \equiv 5 \pmod{20}$
- 5 a $10x \equiv 20 \pmod{7} \Rightarrow 10x \equiv 10 \times 2 \pmod{7}$ As gcd(10,7) = 1, using the division (cancelling) laws $n \equiv 2 \pmod{7}$
 - **b** $3x \equiv 9 \pmod{8} \Rightarrow 3x \equiv 3 \times 3 \pmod{8}$ As gcd(3,8) = 1, using the division (cancelling) laws $n \equiv 3 \pmod{8}$

5 c $5x \equiv 15 \pmod{3} \Rightarrow 5x \equiv 5 \times 3 \pmod{3}$

As gcd(5,3) = 1, using the division (cancelling) laws $x \equiv 3 \equiv 0 \pmod{3}$

d $3x \equiv 12 \pmod{9} \Rightarrow 3x \equiv 3 \times 4 \pmod{9}$

As gcd(3,9) = 3, using the division (cancelling) laws $x \equiv 4 \pmod{\frac{9}{3}}$,

i.e.
$$x \equiv 4 \pmod{3} \Rightarrow x \equiv 1 \pmod{3}$$

The solution can also be written as $x \equiv 1, 4 \text{ or } 7 \pmod{9}$

e $6x \equiv 18 \pmod{15} \Rightarrow 6x \equiv 6 \times 3 \pmod{15}$

As gcd(6,15) = 3, using the division (cancelling) laws $x \equiv 3 \pmod{\frac{15}{3}}$, i.e. $x \equiv 3 \pmod{5}$

The solution can also be written as $x \equiv 3, 8 \text{ or } 13 \pmod{15}$

f $20x \equiv 200 \pmod{30} \Rightarrow 20x \equiv 20 \times 10 \pmod{30}$

As gcd(20,30) = 10, using the division (cancelling) laws $x \equiv 10 \pmod{\frac{30}{10}}$,

i.e.
$$x \equiv 10 \pmod{3} \Rightarrow x \equiv 1 \pmod{3}$$

The solution can also be written as $x \equiv 1, 4, 7, 10, 13, 16, 19, 22, 25$ or 28 (mod 30)

- **6 a** {0,1,2,3,4,5,6,7,8,9,10,11}
 - **b** $4x \equiv 8 \pmod{12} \Rightarrow 4x \equiv 4 \times 2 \pmod{12}$

As gcd(4,12) = 4, using the division (cancelling) laws $x \equiv 2 \pmod{\frac{12}{4}}$, i.e. $x \equiv 2 \pmod{3}$

The solutions of $x \equiv 2 \pmod{3}$ in the set given in part **a** are $x \equiv 2, 5, 8, 11$

7 **a** $733 = 6 \times 120 + 13$

$$120 = 9 \times 13 + 3$$

$$13 = 4 \times 3 + 1$$

$$3 = 3 \times 1 + 0$$

So
$$gcd(733,120) = 1$$

Working backwards through the steps of the Euclidean algorithm gives:

$$1 = 13 - 4(3)$$

$$=13-4(120-9(13))$$

$$=37(13)-4(120)$$

$$=37(733-6(120))-4(120)$$

$$=37(733)-226(120)$$

So
$$a = -226$$
, $b = 37$

b From part **a**, $-226 \times 120 = -37 \times 733 + 1 \Rightarrow -226 \times 120 \equiv 1 \pmod{733}$

So $120x \equiv 1 \pmod{733} \Rightarrow 120x \equiv 120 \times (-226) \pmod{733}$

As gcd(120,733) = 1, using the division (cancelling) laws $x = -226 \pmod{733}$

$$\Rightarrow x \equiv 733 - 226 \equiv 507 \pmod{733}$$

- 8 a $571 = 11 \times 50 + 21$
 - $50 = 2 \times 21 + 8$
 - $21 = 2 \times 8 + 5$
 - $8 = 1 \times 5 + 3$
 - $5 = 1 \times 3 + 2$
 - $3 = 1 \times 2 + 1$
 - $2 = 2 \times 1 + 0$

So
$$gcd(571,50) = 1$$

Working backwards through the steps of the Euclidean algorithm gives:

- 1 = 3 2
- =2(3)-5
- =2(8)-3(5)
- = 2(8) 3(21 2(8))
- =8(50-2(21))-3(21)
- = 8(50) 19(571 11(50))
- =-19(571)+217(50)

So
$$a = -19$$
, $b = 217$

b From part **a**, $217 \times 50 = 19 \times 571 + 1 \Rightarrow 217 \times 50 \equiv 1 \pmod{571}$

So a multiplicative inverse of 50 modulo 571 is 217.

c $50x \equiv 3 \pmod{571} \Rightarrow 217 \times 50x \equiv 217 \times 3 \equiv 651 \pmod{571}$

As
$$217 \times 50 \equiv 1 \pmod{571}$$
, therefore $x \equiv 651 \pmod{571}$

$$\Rightarrow x \equiv 651 - 571 \pmod{571} \Rightarrow x \equiv 80 \pmod{571}$$

9 a $10 = 1 \times 7 + 3$

$$7 = 2 \times 3 + 1$$

So
$$gcd(7,10) = 1$$

Working backwards:

$$1 = 7 - 2(3)$$

$$=7-2(10-7)$$

$$=3(7)-2(10)$$

$$\Rightarrow$$
 3(7) = 2(10) + 1

Hence $3 \times 7 \equiv 1 \pmod{10}$, so 3 is a multiplicative inverse of 7 modulo 10

b $4 = 1 \times 3 + 1$

So
$$gcd(3,4) = 1$$

$$1 = 4 - 1(3)$$

$$\Rightarrow -1(3) = -1(4) + 1$$

Hence $-1 \times 3 \equiv 1 \pmod{4}$, so -1 is a multiplicative inverse of 3 modulo 4

So
$$x = 4 - 1$$
, i.e. $x = 3$ is also a solution $[3 \times 3 \equiv 9 \equiv 1 \pmod{4}]$

9 c $37 = 3 \times 12 + 1$

So
$$gcd(12,37) = 1$$

$$1 = 37 - 3(12)$$

$$\Rightarrow$$
 -3(12) = -1(37) + 1

Hence $-3 \times 12 \equiv 1 \pmod{10}$, so -3 is a multiplicative inverse of 12 modulo 37

So
$$x = 37 - 3$$
, i.e. $x = 34$ is also a solution

d $99 = 1 \times 70 + 29$

$$70 = 2 \times 29 + 12$$

$$29 = 2 \times 12 + 5$$

$$12 = 2 \times 5 + 2$$

$$5 = 2 \times 2 + 1$$

So
$$gcd(70,99) = 1$$

Working backwards:

$$1 = 5 - 2(2)$$

$$=5-2(12-2(5))$$

$$=5(29-2(12))-2(12)$$

$$=5(29)-12(70-2(29))$$

$$=29(99-70)-12(70)$$

$$=29(99)-41(70)$$

$$\Rightarrow$$
 -41(70) = -29(99) + 1

Hence $-41 \times 70 \equiv 1 \pmod{99}$, so -41 is a multiplicative inverse of 70 modulo 99

So
$$x = 99 - 41$$
, i.e. $x = 58$ is also a solution

10 a $7 = 1 \times 5 + 2$

$$5 = 2 \times 2 + 1$$

So gcd(5,7) = 1, there is a unique solution

Working backwards:

$$1 = 5 - 2(2)$$

$$=5-2(7-5)$$

$$=3(5)-2(7)$$

$$\Rightarrow$$
 3(5) \equiv 2(7) + 1

Hence $3 \times 5 \equiv 1 \pmod{7}$

$$5x \equiv 2 \pmod{7}$$
, so $3 \times 5x \equiv 6 \pmod{7}$, so $x \equiv 6 \pmod{7}$

- **10 b** $49 = 9 \times 5 + 4$
 - $5 = 1 \times 4 + 1$

So gcd(5,49) = 1, there is a unique solution

Working backwards:

$$1 = 5 - 4$$

$$=5-(49-9(5))$$

$$=10(5)-49$$

$$\Rightarrow$$
 10(5) \equiv 49 + 1

Hence $10 \times 5 \equiv 1 \pmod{49}$

$$5x \equiv 9 \pmod{49}$$
, so $10 \times 5x \equiv 90 \pmod{49}$

This gives $x \equiv 90 \pmod{49} \Rightarrow x \equiv 41 \pmod{49}$

- c gcd (3,78) = 3, but 3 does not divide 2, so $3x \equiv 2 \pmod{78}$ has no solutions
- **d** $13 = 1 \times 8 + 5$

$$8 = 1 \times 5 + 3$$

$$5 = 1 \times 3 + 2$$

$$3 = 1 \times 2 + 1$$

So gcd(8,13) = 1, there is a unique solution

Working backwards:

$$1 = 3 - (5 - 3)$$

$$=2(8-5)-5$$

$$= 2(8) - 3(13 - 8)$$

$$=5(8)-3(13)$$

$$\Rightarrow$$
 5(8) \equiv 3(13) + 1

Hence $5 \times 8 \equiv 1 \pmod{13}$

$$8x \equiv 7 \pmod{13}$$
, so $5 \times 8x \equiv 35 \pmod{13}$

This gives $x \equiv 35 \pmod{13} \Rightarrow x \equiv 9 \pmod{13}$

 $e 91 = 6 \times 15 + 1$

So gcd(15,91) = 1, there is a unique solution

$$-6 \times 15 \equiv -91 + 1$$
, hence $-6 \times 15 \equiv 1 \pmod{91}$

$$15x \equiv 7 \pmod{91}$$
, so $-6 \times 15x \equiv -42 \pmod{91}$

This gives $x \equiv -42 \pmod{91} \Rightarrow x \equiv 49 \pmod{91}$

10 f
$$27 = 2 \times 10 + 7$$

$$10 = 1 \times 7 + 3$$

$$7 = 2 \times 3 + 1$$

So gcd(10,27) = 1, there is a unique solution

Working backwards:

$$1 = 7 - 2(3)$$

$$=7-2(10-7)$$

$$=3(27-2(10))-2(10)$$

$$=3(27)-8(10)$$

$$\Rightarrow$$
 $-8(10) \equiv -3(27) + 1$

Hence
$$-8 \times 10 \equiv 1 \pmod{27}$$

$$10x \equiv 9 \pmod{27}$$
, so $-8 \times 10x \equiv -72 \pmod{27}$

This gives
$$x \equiv -72 \pmod{27} \Rightarrow x \equiv 9 \pmod{27}$$

11 a gcd(9,21) = 3, so simplify equation by dividing everything by 3, which gives:

$$3x \equiv 5 \pmod{7}$$

Applying the Euclidean algorithm:

$$7 = 2 \times 3 + 1$$
, so $-2 \times 3 \equiv 1 \pmod{7}$

$$3x \equiv 5 \pmod{7}$$
, so $-2 \times 3x \equiv -10 \pmod{7}$

This gives
$$x \equiv -10 \pmod{7} \Rightarrow x \equiv 4 \pmod{7}$$

- **b** $\gcd(14,21) = 7$, so $14x \equiv 13 \pmod{21}$ has no solutions.
- \mathbf{c} gcd (9,15) = 3, so simplify equation by dividing everything by 3, which gives:

$$3x \equiv 4 \pmod{5}$$

Applying the Euclidean algorithm:

$$5 = 1 \times 3 + 2$$

$$3 = 1 \times 2 + 1$$

This gives:

$$1 = 3 - 2 = 3 - (5 - 3) = 2(3) - 5$$

So
$$2 \times 3 = 5 + 1$$
, thus $2 \times 3 \equiv 1 \pmod{5}$

$$3x \equiv 4 \pmod{5}$$
, so $2 \times 3x \equiv 8 \pmod{5}$

This gives $x \equiv 8 \pmod{5} \Rightarrow x \equiv 3 \pmod{5}$

11 d gcd(490,750) = 10, so simplify equation by dividing everything by 10, which gives:

$$49x \equiv 75 \pmod{80}$$

Applying the Euclidean algorithm:

$$80 = 1 \times 49 + 31$$

$$49 = 1 \times 31 + 18$$

$$31 = 1 \times 18 + 13$$

$$18 = 1 \times 13 + 5$$

$$13 = 2 \times 5 + 3$$

$$5 = 1 \times 3 + 2$$

$$3 = 2 \times 1 + 1$$

Working backwards this gives:

$$1 = 3 - 2 = 2(3) - 5 = 2(13) - 5(5)$$

$$=7(13)-5(18)=7(31)-12(18)$$

$$=19(31)-12(49)$$

$$=19(80)-31(49)$$

$$\Rightarrow -31(49) \equiv -19(80) + 1$$

Hence
$$-31 \times 49 \equiv 1 \pmod{80}$$

$$49x \equiv 75 \pmod{80}$$
, so $-31 \times 49x \equiv -2325 \pmod{80}$

This gives
$$x \equiv -2325 \pmod{80} \Rightarrow x \equiv 75 \pmod{80}$$

- e gcd (12,18) = 6 does not divide 9, so $12x \equiv 9 \pmod{18}$ has no solutions.
- f $\gcd(15,25) = 5$ does not divide 9, so $15x \equiv 9 \pmod{25}$ has no solutions.
- 12 Suppose gcd(a, m) = d, then a = pd, m = qd for some integers p and q.

If
$$ax \equiv b \pmod{m}$$
, then $ax = km + b$ for some integer k, and hence

$$pdx = kqd + b \Rightarrow b = d(px - qd)$$

So if there is a solution x to $ax \equiv b \pmod{m}$, then $d \mid b$

Since b is not divisible by d, then there can be no solutions to the equation

13 a Applying the Euclidean algorithm:

$$702 = 8 \times 80 + 62$$

$$80 = 1 \times 62 + 18$$

$$62 = 3 \times 18 + 8$$

$$18 = 2 \times 8 + 2$$

$$8 = 4 \times 2 + 0$$

So
$$gcd(702,80) = 2$$
.

b As gcd(702,80) = 2, the number of distinct solutions of $80x \equiv 20 \pmod{702}$ is 2.

13 c gcd(80,702) = 2, so simplify equation by dividing everything by 2, which gives:

$$40x \equiv 10 \pmod{351}$$

Applying the Euclidean algorithm:

$$351 = 8 \times 40 + 31$$

$$40 = 1 \times 31 + 9$$

$$31 = 3 \times 9 + 4$$

$$9 = 2 \times 4 + 1$$

Working backwards this gives:

$$1 = 9 - 2(4) = 9 - 2(31 - 3(9))$$

$$= 7(9) - 2(31) = 7(40 - 31) - 2(31)$$

$$= 7(40) - 9(31) = 7(40) - 9(351 - 8(40))$$

$$=79(40)-9(351)$$

$$\Rightarrow$$
 79(40) \equiv 9(351) + 1

Hence
$$79 \times 40 \equiv 1 \pmod{351}$$

$$40x \equiv 10 \pmod{351}$$
, so $79 \times 40x \equiv 790 \pmod{351}$

This gives
$$x \equiv 790 \pmod{351} \Rightarrow x \equiv 88 \pmod{351}$$

So solutions in the set of least residuals modulo 702 are 88 and 88 + 351 = 439

14 a Applying the Euclidean algorithm to 39 and 216:

$$216 = 5 \times 39 + 21$$

$$39 = 1 \times 21 + 18$$

$$21 = 1 \times 18 + 3$$

$$18 = 6 \times 3 + 0$$

so gcd (39,216) = 3 and 3 does not divide 10, so $39x \equiv 10 \pmod{216}$ has no solutions.

b gcd(39,216) = 3, so simplify equation by dividing everything by 3, which gives:

$$13x \equiv 3 \pmod{72}$$

Applying the Euclidean algorithm:

$$72 = 5 \times 13 + 7$$

$$13 = 1 \times 7 + 6$$

$$7 = 1 \times 6 + 1$$

Working backwards this gives:

$$1 = 7 - 6 = 2(7) - 13$$

$$= 2(72 - 5(13)) - 13$$

$$= 2(72) - 11(13)$$

$$\Rightarrow -11(13) \equiv -2(72) + 1$$

Hence
$$-11 \times 13 \equiv 1 \pmod{72}$$

$$13x \equiv 3 \pmod{72}$$
, so $-11 \times 13x \equiv -33 \pmod{72}$

This gives
$$x \equiv -33 \pmod{72} \Rightarrow x \equiv 39 \pmod{72}$$

So solutions in the set of least residuals modulo 216 are 39,111 and 183

15 gcd(21,30) = 3, so simplify equation by dividing everything by 3, which gives:

$$7n \equiv 4 \pmod{10}$$

Applying the Euclidean algorithm:

$$10 = 1 \times 7 + 3$$

$$7 = 2 \times 3 + 1$$

Working backwards this gives:

$$1 = 7 - 2(3) = 3(7) - 2(10)$$

$$\Rightarrow$$
 3(7) \equiv 2(10) +1

Hence
$$3 \times 7 \equiv 1 \pmod{10}$$

$$7n \equiv 4 \pmod{10}$$
, so $3 \times 7n \equiv 12 \pmod{10}$

This gives
$$n \equiv 12 \pmod{10} \Rightarrow n \equiv 2 \pmod{10}$$

So solutions in the range $0 \le n < 29$ are 2, 12 and 22

16 Applying the Euclidean algorithm:

$$277 = 11 \times 25 + 2$$

$$25 = 12 \times 2 + 1$$

So gcd(25,277) = 1, there is a unique solution.

Working backwards this gives:

$$1 = 25 - 12(2)$$

$$=25-12(277-11(25))$$

$$=133(25)-12(277)$$

$$\Rightarrow$$
 133(25) \equiv 12(277) + 1

Hence
$$133 \times 25 \equiv 1 \pmod{277}$$

$$25x \equiv 6 \pmod{277}$$
, so $133 \times 25x \equiv 798 \pmod{277}$

This gives $x \equiv 798 \pmod{277} \Rightarrow x \equiv 798 - 277 - 277 \equiv 244 \pmod{277}$

 $17 \gcd(28,100) = 4$, so simplify equation by dividing everything by 4, which gives:

$$7x \equiv 5 \pmod{25}$$

Applying the Euclidean algorithm:

$$25 = 3 \times 7 + 4$$

$$7 = 1 \times 4 + 3$$

$$4 = 1 \times 3 + 1$$

Working backwards this gives:

$$1 = 4 - 3 = 2(4) - 7 = 2(25 - 3(7)) - 7$$

$$=2(25)-7(7)$$

$$\Rightarrow$$
 $-7(7) \equiv -2(25) + 1$

Hence
$$-7 \times 7 \equiv 1 \pmod{25}$$

$$7x \equiv 5 \pmod{25}$$
, so $-7 \times 7x \equiv -35 \pmod{25}$

This gives
$$x \equiv -35 \pmod{25} \Rightarrow x \equiv 15 \pmod{25}$$

So solutions in the range $0 \le x < 100$ are 15, 40, 65 and 90

18 gcd(70,925) = 5, so simplify equation by dividing everything by 5, which gives:

$$14x \equiv 4 \pmod{185}$$

Applying the Euclidean algorithm:

$$185 = 13 \times 14 + 3$$

$$14 = 4 \times 3 + 2$$

$$3 = 1 \times 2 + 1$$

Working backwards this gives:

$$1 = 3 - 2 = 3 - (14 - 4(3))$$

$$= 5(3) - (14) = 5(185 - 13(14)) - (14)$$

$$=5(185)-66(14)$$

$$\Rightarrow$$
 -66(14) \equiv -5(185) + 1

Hence
$$-66 \times 14 \equiv 1 \pmod{185}$$

$$14x \equiv 4 \pmod{185}$$
, so $-66 \times 14x \equiv -264 \pmod{185}$

This gives $x \equiv -264 \pmod{185} \Rightarrow x \equiv 106 \pmod{185}$