Complex numbers Mixed exercise

1 a i Write z = x + iy and square both sides:

$$\left|x + iy\right|^2 = \left|x - 4 + iy\right|^2$$

$$x^2 + y^2 = (x-4)^2 + y^2$$

$$x^2 = x^2 - 8x + 16$$

$$x = 2$$

- ii This equation describes points on the perpendicular bisector of the line segment connecting (0,0) and (4,0)
- **b** i Write z = x + iy and square both sides:

$$|x + iy|^2 = 4|x - 4 + iy|^2$$

$$x^{2} + y^{2} = 4(x-4)^{2} + 4y^{2}$$

$$x^{2} + y^{2} = 4(x^{2} - 8x + 16) + 4y^{2}$$

$$x^2 + y^2 = 4x^2 - 32x + 64 + 4y^2$$

$$3y^2 + 3x^2 - 32x + 64 = 0$$

$$x^2 - \frac{32}{3}x + y^2 + \frac{64}{3} = 0$$

Complete the square:

$$\left(x - \frac{16}{3}\right)^2 + y^2 = \frac{64}{9}$$

- ii The equation describes a circle centred at $\left(\frac{16}{3}, 0\right)$, radius $r = \frac{8}{3}$
- 2 a The equation $|z-2+i| = \sqrt{3}$ describes a circle centred at (2,-1), radius $r = \sqrt{3}$:

2 b The half-line L y = mx - 1, $x \ge 0$, m > 0 is tangent to the circle from part **a**. This means that it has to lie on the circle and thus satisfy the equation $(x-2)^2 + (y+1)^2 = 3$. Substituting the expression for y into this equation gives:

$$\left(x-2\right)^2 + \left(mx\right)^2 = 3$$

$$x^2 - 4x + 4 + m^2 x^2 - 3 = 0$$

$$x^2(1+m^2) - 4x + 1 = 0$$

$$x^2 - \frac{4}{1+m^2} + \frac{1}{1+m^2} = 0$$

This equation must have exactly one solution, as the line and the circle only touch at one point. Therefore, it needs to be of the form:

$$\left(x - \frac{2}{1 + m^2}\right)^2 = 0 \text{ which means that } \left(\frac{2}{1 + m^2}\right)^2 = \frac{1}{1 + m^2}$$

Solving this gives:

$$\frac{4}{\left(1+m^2\right)^2} = \frac{1}{1+m^2}$$

$$4 = 1 + m^2$$

$$m^2 = 3$$

$$m = \sqrt{3}$$

since we know that m > 0.

So L is given by $y = x\sqrt{3} - 1$.

- c For x = 0, y = -1 so the line goes through (0,-1). The gradient is equal to $\sqrt{3}$, so $\tan \theta = \sqrt{3}$. Therefore $\theta = \frac{\pi}{3}$. So the equation for L can be written as $\arg(z+i) = \frac{\pi}{3}$.
- **d** Using $\left(x \frac{2}{1 + m^2}\right)^2 = 0$ from part **b** and substituting $m = \sqrt{3}$ we obtain $\left(x \frac{1}{2}\right)^2 = 0$, so $x = \frac{1}{2}$.

Now substituting this value into $y = x\sqrt{3} - 1$ we see $y = \frac{\sqrt{3} - 2}{2}$. So $a = \frac{1}{2} + \left(\frac{\sqrt{3} - 2}{2}\right)i$.

3 a
$$|z+2|=|2z-1|$$

$$\Rightarrow |x+iy+2| = |2(x+iy)-1|$$

$$\Rightarrow |x+iy+2| = |2x+2iy-1|$$

$$\Rightarrow |(x+2)+iy| = |(2x-1)+i(2y)|$$

$$\Rightarrow |(x+2)+iy|^2 = |(2x-1)+i(2y)|^2$$

$$\Rightarrow (x+2)^2 + y^2 = (2x-1)^2 + (2y)^2$$

$$\Rightarrow x^2 + 4x + 4 + y^2 = 4x^2 - 4x + 1 + 4y^2$$

$$\Rightarrow 0 = 3x^2 - 8x + 3y^2 + 1 - 4$$

$$\Rightarrow 3x^2 - 8x + 3v^2 - 3 = 0$$

$$\Rightarrow x^2 - \frac{8}{3}x + y^2 - 1 = 0$$

$$\Rightarrow \left(x - \frac{4}{3}\right)^2 - \frac{16}{9} + y^2 - 1 = 0$$

$$\Rightarrow \left(x - \frac{4}{3}\right)^2 + y^2 = \frac{16}{9} + 1$$

$$\Rightarrow \left(x - \frac{4}{3}\right)^2 + y^2 = \frac{25}{9}$$

$$\Rightarrow \left(x - \frac{4}{3}\right)^2 + y^2 = \left(\frac{5}{3}\right)^2$$

This is a circle, centre $\left(\frac{4}{3},0\right)$, radius $\frac{5}{3}$.

The Cartesian equation of the locus of points representing |z+2| = |2z-1| is

$$\left(x - \frac{4}{3}\right)^2 + y^2 = \frac{25}{9}.$$

3 **b**
$$|z+2| = |2z-1| \Rightarrow \left(x - \frac{4}{3}\right)^2 + y^2 = \frac{25}{9}$$
 (1)
 $\arg z = \frac{\pi}{4} \Rightarrow \arg(x+iy) = \frac{\pi}{4}$
 $\Rightarrow \frac{y}{x} = \tan \frac{\pi}{4}$
 $\Rightarrow y = x$ where $x > 0, y > 0$ (2)
Solving simultaneously:
 $\left(x - \frac{4}{3}\right)^2 + x^2 = \frac{25}{9}$
 $\Rightarrow x^2 - \frac{4}{3}x - \frac{4}{3}x + \frac{16}{9} + x^2 = \frac{25}{9}$
 $\Rightarrow 2x^2 - \frac{8}{3}x = \frac{25}{9} - \frac{16}{9}$
 $\Rightarrow 2x^2 - \frac{8}{3}x = \frac{9}{9}$
 $\Rightarrow 2x^2 - \frac{8}{3}x = 1$ (×3)
 $\Rightarrow 6x^2 - 8x = 3$
 $\Rightarrow 6x^2 - 8x = 3$

As x > 0 then we reject $x = \frac{4 - \sqrt{34}}{6}$

 $\Rightarrow x = \frac{4 \pm \sqrt{34}}{c}$

and accept
$$x = \frac{4 + \sqrt{34}}{6}$$

as
$$y = x$$
, then $y = \frac{4 + \sqrt{34}}{6}$

So
$$z = \left(\frac{4+\sqrt{34}}{6}\right) + \left(\frac{4+\sqrt{34}}{6}\right)i$$

The value of z satisfying |z+2| = |2z-1| and $\arg z = \frac{\pi}{4}$

is
$$z = \left(\frac{4 + \sqrt{34}}{6}\right) + \left(\frac{4 + \sqrt{34}}{6}\right)$$
 i OR $z = 1.64 + 1.64$ i (2 d.p.)

3 c

The region R (shaded) satisfies both $|z+2| \ge |2z-1|$ and $\frac{\pi}{4} \le \arg z \le \pi$.

Note that
$$|z + 2| \ge |2z - 1|$$

$$\Rightarrow (x+2)^2 + y^2 \ge (2x-1)^2 + (2y)^2$$

$$\Rightarrow 0 \geqslant 3x^2 - 8x + 3y^2 - 3$$

$$\Rightarrow 0 \geqslant \left(x - \frac{4}{3}\right)^2 - \frac{16}{9} + y^2 - 1$$

$$\Rightarrow \frac{25}{9} \geqslant \left(x - \frac{4}{3}\right)^2 + y^2$$

$$\Rightarrow \left(x - \frac{4}{3}\right)^2 + y^2 \leqslant \frac{25}{9}$$

represents region inside and bounded by the circle, centre $\left(\frac{4}{3},0\right)$, radius $\frac{5}{3}$.

$$4 \quad \text{a} \quad \arg\left(\frac{z-4-2i}{z-6i}\right) = \frac{\pi}{2}$$

$$\Rightarrow \arg(z-4-2i) - \arg(z-6i) = \frac{\pi}{2}$$

$$\Rightarrow \theta - \phi = \frac{\pi}{2}$$
, where $\arg(z - 4 - 2i) = \theta$ and $\arg(z - 6i) = \phi$.

Using geometry,

$$\Rightarrow A\hat{P}B = -\phi + \theta$$

$$\Rightarrow A\hat{P}B = \theta - \phi$$

$$\Rightarrow A\hat{P}B = \frac{\pi}{2}$$

The locus of z is the arc of a circle (in this case, a semi-circle) cut off at (4, 2) and (0, 6) as shown below.

4 b |z-2-4i| is the distance from the point (2, 4) to the locus of points P.

Note, as the locus is a semi-circle, its centre is $\left(\frac{4+0}{2}, \frac{2+6}{2}\right) = (2,4)$.

Therefore |z-2-4i| is the distance from the centre of the semi-circle to points on the locus of points P.

Hence
$$|z-2-4i|$$
 = radius of semi-circle
= $\sqrt{(0-2)^2 + (6-4)^2}$
= $\sqrt{4+4}$
= $\sqrt{8}$
= $2\sqrt{2}$

The exact value of |z-2-4i| is $2\sqrt{2}$

- 5 We have 2|z+3| = |z-3|
 - a To show that this describes a circle, write z = x + iy and square both sides:

$$2|x+3+iy| = |x-3+iy|$$

$$4|x+3+iy|^2 = |x-3+iy|^2$$

$$4(x+3)^2 + 4y^2 = (x-3)^2 + y^2$$

$$4x^2 + 24x + 36 + 3y^2 = x^2 - 6x + 9$$

$$3x^2 + 30x + 27 + 3y^2 = 0$$

$$x^2 + y^2 + 10x + 9 = 0$$

as required.

b

5 c L is given by $b^*z + bz^* = 0$ where $b, z \in \mathbb{C}$.

We know that L is tangent to the circle and that $\arg b = \theta$.

We want to find possible values of $\tan \theta$.

Write
$$z = x + iy$$
, $b = u + iv$.

Then the equation for L becomes:

$$b(x-iy)+b^*(x+iy)=0$$

$$(u+iv)(x-iy)+(u-iv)(x+iy)=0$$

$$ux + vy = 0$$

$$y = -\frac{ux}{v}, v \neq 0$$

If v = 0 then ux = 0, so either u = 0 i.e. b = 0, which means that the line does not exist, or x = 0 but this is not tangent to the circle.

So we can assume $v \neq 0$.

Now, since
$$b = u + iv$$
, $\tan \theta = \frac{v}{u}$.

So L can be written as
$$y = -\frac{x}{\tan \theta}$$

We want to find $\tan \theta$ such that the line is tangent to the circle.

Therefore, it has to satisfy the equation for the circle $x^2 + y^2 + 10x + 9 = 0$:

$$x^2 + \frac{x^2}{\tan^2 \theta} + 10x + 9 = 0$$

$$x^{2} \tan^{2} \theta + x^{2} + 10x \tan^{2} \theta + 9 \tan^{2} \theta = 0$$

$$x^2 \left(\tan^2 \theta + 1\right) + 10x \tan^2 \theta + 9 \tan^2 \theta = 0$$

Let
$$a = \tan^2 \theta$$
. Then $x^2(a+1) + 10xa + 9a = 0$.

Since the line is tangent to the circle, this equation can only have one solution.

Therefore we need $\Delta = 0$.

Therefore

$$100a^2 - 36a(a+1) = 0$$

$$100a^2 - 36a^2 - 36a = 0$$

$$a(64a-36)=0$$

$$a = 0$$
 or $a = \frac{36}{64} = \frac{9}{16}$

Recall that
$$a = \tan^2 \theta = \frac{v^2}{u^2}$$

Since
$$v \neq 0$$
, we have $a \neq 0$

So
$$a = \frac{9}{16}$$
 and we can solve for $\tan \theta$:

$$\tan^2\theta = \frac{9}{16}$$

$$\tan\theta = \pm \frac{3}{4}$$

6 a Let $arg(z-5-2i) = \alpha$ and $arg(z-1-6i) = \beta$.

Then we have
$$\arg\left(\frac{z-5-2i}{z-1-6i}\right) = \arg\left(z-5-2i\right) - \arg\left(z-1-6i\right) = \alpha - \beta = \frac{\pi}{2}$$

As α, β vary, P i.e. the intersection of L_1 and L_2 creates an arc.

Since $A\hat{P}B = \frac{\pi}{2}$, this arc will be a semicircle and the line segment AB is its diameter.

The centre of the circle lies in the middle of the line segment AB. A = (5,2) and B = (1,6) so the midpoint is C = (3,4).

The radius is the distance CA. $CA = \sqrt{(5-3)^2 + (4-2)^2} = 2\sqrt{2}$, so $r = 2\sqrt{2}$.

6 b The maximum value will lie on the line connecting the centre of this circle with the origin. This is represented by point *D* on the diagram below:

Thus D satisfies both the equation of the semicircle described in part \mathbf{a} , $(x-3)^2 + (y-4)^2 = 8$, and the equation of the line going through the origin and the centre of that semicircle, $y = \frac{4x}{3}$.

Substituting this into the equation for the circle we obtain:

$$(x-3)^{2} + \left(\frac{4x}{3} - 4\right)^{2} = 8$$

$$x^{2} - 6x + 9 + \frac{16x^{2}}{9} - \frac{32x}{3} + 16 - 8 = 0$$

$$\frac{25x^{2}}{9} - \frac{50x}{3} + 17 = 0$$

$$x^{2} - 6x + \frac{153}{25} = 0$$

$$x = 3 \pm \frac{6\sqrt{2}}{5}$$

We're looking for the larger value, so $x = 3 + \frac{6\sqrt{2}}{5}$, $y = 4 + \frac{8\sqrt{2}}{5}$ and so:

$$|z| = \sqrt{x^2 + y^2} = \sqrt{(5 + 2\sqrt{2})^2} = 5 + 2\sqrt{2}.$$

7 a First note that both 2 = |z - 2 - 3i| and 3 = |z - 2 - 3i| represent circles centred at (2,3) with radius r = 2 and r = 3 respectively.

Thus $2 \le |z-2-3i| \le 3$ represents the region between these two circles, including the circles since the inequalities are not strict.

- **b** The area of this region can be found by subtracting the area of the smaller circle from the area of the larger circle $P_{\rm region} = P_{\rm large} P_{\rm small} = 9\pi 4\pi = 5\pi$.
- c We want to determine whether z = 4 + i lies within the region.

We have $|4+i-2-3i| = |2-2i| = 2|1-i| = 2\sqrt{2}$.

Since $2 \le 2\sqrt{2} \le 3$, the point lies in the region.

8
$$T: w = \frac{1}{7}$$

a line
$$x = \frac{1}{2}$$
 in the z-plane

$$w = \frac{1}{z}$$

$$\Rightarrow wz = 1$$

$$\Rightarrow z = \frac{1}{w}$$

$$\Rightarrow z = \frac{1}{(u+iv)} \times \frac{(u-iv)}{(u-iv)}$$

$$\Rightarrow z = \frac{u-iv}{u^2+v^2}$$

$$\Rightarrow z = \frac{u}{u^2+v^2} + i\left(\frac{-v}{u^2+v^2}\right)$$
So, $x+iy = \frac{u}{u^2+v^2} + i\left(\frac{-v}{u^2+v^2}\right)$

$$\Rightarrow x = \frac{u}{u^2+v^2} \text{ and } y = \frac{v}{u^2+v^2}$$
As $x = \frac{1}{2}$, then $\frac{1}{2} = \frac{u}{u^2+v^2}$

$$\Rightarrow u^2+v^2 = 2u$$

$$\Rightarrow u^2-2u+v^2 = 0$$

$$\Rightarrow (u-1)^2-1+v^2 = 0$$

$$\Rightarrow (u-1)^2+v^2 = 1$$

Therefore the transformation T maps the line $x = \frac{1}{2}$ in the z-plane to a circle C, with centre (1, 0), radius 1. The equation of C is $(u-1)^2 + v^2 = 1$.

8 b
$$x \geqslant \frac{1}{2}$$

$$\frac{u}{u^2 + v^2} \geqslant \frac{1}{2}$$

$$\Rightarrow 2u \geqslant u^2 + v^2$$

$$\Rightarrow 0 \geqslant u^2 + v^2 - 2u$$

$$\Rightarrow 0 \geqslant (u-1)^2 + v^2 - 1$$

$$\Rightarrow 1 \geqslant (u-1)^2 + v^2$$

$$\Rightarrow (u-1)^2 + v^2 \leqslant 1$$

9 a |z+4i|=2 is represented by a circle centre (0,-4), radius 2.

b |z| represents the distance from (0, 0) to points on the locus of P.

Hence
$$|z|_{\text{max}}$$
 occurs when $z = -6i$

Therefore
$$|z|_{\text{max}} = |-6i| = 6$$
.

9 c i
$$T_1: w = 2z$$

METHOD (1) z lies on circle with equation |z + 4i| = 2

$$\Rightarrow w = 2z$$

$$\Rightarrow \frac{w}{2} = z$$

$$\Rightarrow \frac{w}{2} + 4i = z + 4i$$

$$\Rightarrow \frac{w + 8i}{2} = z + 4i$$

$$\Rightarrow \left| \frac{w + 8i}{2} \right| = |z + 4i|$$

$$\Rightarrow \frac{|w + 8i|}{|2|} = |z + 4i|$$

$$\Rightarrow \frac{|w + 8i|}{2} = 2$$

$$\Rightarrow |w + 8i| = 4$$

So the locus of the image of P under T_1 is a circle centre (0, -8), radius 4, with equation $u^2 + (v + 8)^2 = 16$.

METHOD (2)

z lies on circle centre
$$(0, -4)$$
, radius 2

enlargement scale factor 2, centre 0.

w = 2z lies on circle centre (0,-8), radius 4.

So the locus of the image of P under T_1 is a circle centre (0, -8), radius 4, with equation $u^2 + (v + 8)^2 = 16$.

9 c ii $T_2: w = iz$

z lies on a circle with equation |z + 4i| = 2

$$w = iz$$

$$\Rightarrow \frac{w}{i} = z$$

$$\Rightarrow \frac{w}{i} \left(\frac{i}{i}\right) = z$$

$$\Rightarrow \frac{wi}{(-1)} = z$$

$$\Rightarrow -wi = z$$

 $\Rightarrow z = -wi$

Hence
$$|z+4i| = 2 \Rightarrow |-wi+4i| = 2$$

$$\Rightarrow |(-i)(w-4)| = 2$$

$$\Rightarrow |(-i)||w-4| = 2$$

$$\Rightarrow |w-4| = 2$$

So the locus of the image of P under T_2 is a circle centre (4, 0), radius 2, with equation $(u-4)^2 + v^2 = 4$.

iii $T_3: w = -iz$

z lies on a circle with equation |z + 4i| = 2

$$w = -iz$$

$$\Rightarrow iw = i(-iz)$$

$$\Rightarrow iw = z$$

$$\Rightarrow z = iw$$

So the locus of the image of P under T_3 is a circle centre (-4, 0), radius 2, with equation $(u+4)^2 + v^2 = 4$.

9 c iv
$$T_4: w = z^*$$

z lies on a circle with equation |z + 4i| = 2

$$w = z^* \Rightarrow u + iv = x - iy$$
So $u = x$, $v = -y$ and $x = u$ and $y = -v$

$$|z + 4i| = 2 \Rightarrow |x + iy + 4i| = 2$$

$$\Rightarrow |x + i(y + 4)| = 2$$

$$\Rightarrow |u + i(-v + 4)| = 2$$

$$\Rightarrow |u + i(4 - v)| = 2$$

$$\Rightarrow |u + i(4 - v)|^2 = 2^2$$

$$\Rightarrow |u + i(4 - v)|^2 = 4$$

$$\Rightarrow u^2 + (v - 4)^2 = 4$$

So the locus of the image of P under T_4 is a circle centre (0, 4), radius 2, with equation $u^2 + (v-4)^2 = 4$.

10
$$T: w = \frac{z+2}{z+i}, z \neq -i$$

a the imaginary axis in z-plane $\Rightarrow x = 0$

$$w = \frac{z+2}{z+i}$$

$$\Rightarrow w(z+i) = z+2$$

$$\Rightarrow wz + iw = z+2$$

$$\Rightarrow wz - z = 2 - iw$$

$$\Rightarrow z(w-1) = 2 - iw$$

$$\Rightarrow z = \frac{2 - iw}{w-1}$$

$$\Rightarrow z = \frac{2 - i(u+iv)}{u+iv-1}$$

$$\Rightarrow z = \left[\frac{(2+v) - iu}{(u-1)+iv}\right] \times \left[\frac{(u-1) - iv}{(u-1)-iv}\right]$$

$$\Rightarrow z = \frac{(2+v)(u-1) - uv - iv(2+v) - iu(u-1)}{(u-1)^2 + v^2}$$

$$\Rightarrow z = \frac{(2+v)(u-1) - uv}{(u-1)^2 + v^2} - i\left(\frac{v(2+v) + u(u-1)}{(u-1)^2 + v^2}\right)$$
So $x + iy = \frac{(2+v)(u-1) - uv}{(u-1)^2 + v^2} - i\left(\frac{v(2+v) + u(u-1)}{(u-1)^2 + v^2}\right)$

$$\Rightarrow x = \frac{(2+v)(u-1) - uv}{(u-1)^2 + v^2} \text{ and } y = \frac{-v(2+v) - u(u-1)}{(u-1)^2 + v^2}$$
As $x = 0$, then
$$\frac{(2+v)(u-1) - uv}{(u-1)^2 + v^2} = 0$$

$$\Rightarrow (2+v)(u-1) - uv = 0$$

$$\Rightarrow 2u - 2 + vu - v - uv = 0$$

$$\Rightarrow 2u - 2 - v = 0$$

$$\Rightarrow v = 2u - 2$$

The transformation T maps the imaginary axis in the z-plane to the line l with equation v = 2u - 2 in the w-plane.

10 b As y = x, then

$$\frac{-v(2+v) - u(u-1)}{(u-1)^2 + v^2} = \frac{(2+v)(u-1) - uv}{(u-1)^2 + v^2}$$

$$\Rightarrow -v(2+v) - u(u-1) = (2+v)(u-1) - uv$$

$$\Rightarrow -2v - v^2 - u^2 + u = 2u - 2 + vu - v - uv$$

$$\Rightarrow -2v - v^2 - u^2 + u = 2u - 2 - v$$

$$\Rightarrow 0 = u^2 + v^2 + u + v - 2$$

$$\Rightarrow \left(u + \frac{1}{2}\right)^2 - \frac{1}{4} + \left(v + \frac{1}{2}\right)^2 - \frac{1}{4} - 2 = 0$$

$$\Rightarrow \left(u + \frac{1}{2}\right)^2 + \left(v + \frac{1}{2}\right)^2 = \frac{5}{2}$$

$$\Rightarrow \left(u + \frac{1}{2}\right)^2 + \left(v + \frac{1}{2}\right)^2 = \left(\frac{\sqrt{10}}{2}\right)^2$$

$$\Rightarrow \left(u + \frac{1}{2}\right)^2 + \left(v + \frac{1}{2}\right)^2 = \left(\frac{\sqrt{10}}{2}\right)^2$$

$$\Rightarrow \left(u + \frac{1}{2}\right)^2 + \left(v + \frac{1}{2}\right)^2 = \left(\frac{\sqrt{10}}{2}\right)^2$$

The transformation T maps the line y = x in the z-plane to the circle C with centre $\left(-\frac{1}{2}, -\frac{1}{2}\right)$, radius $\frac{\sqrt{10}}{2}$ in the w-plane.

11 T:
$$w = \frac{4-z}{z+i}$$
 $z \neq -i$

circle with equation |z| = 1 in the z-plane.

$$w = \frac{4 - z}{z + i}$$

$$\Rightarrow w(z+i) = 4-z$$

$$\Rightarrow wz + iw = 4 - z$$

$$\Rightarrow wz + z = 4 - iw$$

$$\Rightarrow z(w+1) = 4 - iw$$

$$\Rightarrow z = \frac{4 - iw}{w + 1}$$

$$\Rightarrow |z| = \left| \frac{4 - iw}{w + 1} \right|$$

$$\Rightarrow |z| = \frac{|4 - iw|}{|w + 1|}$$

Applying
$$|z| = 1$$
 gives $1 = \frac{|4 - iw|}{|w + 1|}$

$$\Rightarrow |w+1| = |4-iw|$$

$$\Rightarrow |w+1| = |-i(w+4i)|$$

$$\Rightarrow |w+1| = |-i| |w+4i|$$

$$\Rightarrow |w+1| = |w+4i|$$

$$\Rightarrow |u+iv+1| = |u+iv+4i|$$

$$\Rightarrow |(u+1)+iv| = |u+i(v+4)|$$

$$\Rightarrow |(u+1)+iv|^2 = |u+i(v+4)|^2$$

$$\Rightarrow (u+1)^2 + v^2 = u^2 + (v+4)^2$$

$$\Rightarrow u^2 + 2u + 1 + v^2 = u^2 + v^2 + 8v + 16$$

$$\Rightarrow 2u+1=8v+16$$

$$\Rightarrow 2u - 8v - 15 = 0$$

The circle |z| = 1 is mapped by T onto the line l: 2u - 8v - 15 = 0

(i.e.
$$a = 2$$
, $b = -8$, $c = -15$).

12 T:
$$w = \frac{3iz + 6}{1 - z}$$
; $z \ne 1$

circle with equation |z| = 2

$$w = \frac{3iz + 6}{1 - z}$$

$$\Rightarrow w(1 - z) = 3iz + 6$$

$$\Rightarrow w - wz = 3iz + 6$$

$$\Rightarrow w - 6 = 3iz + wz$$

$$\Rightarrow w - 6 = z(3i + w)$$

$$\Rightarrow \frac{w - 6}{w + 3i} = z$$

$$\Rightarrow \left| \frac{w - 6}{w + 3i} \right| = |z|$$

$$\Rightarrow \frac{|w - 6|}{|w + 3i|} = |z|$$

Applying
$$|z| = 2 \Rightarrow \frac{|w-6|}{|w+3i|} = 2$$

$$\Rightarrow |w-6| = 2|w+3i|$$

$$\Rightarrow |u+iv-6| = 2|u+iv+3i|$$

$$\Rightarrow |(u-6)+iv| = 2|u+i(v+3)|$$

$$\Rightarrow |(u-6)+iv|^2 = 2^2 |u+i(v+3)|^2$$

$$\Rightarrow (u-6)^2 + v^2 = 4[u^2 + (v+3)^2]$$

$$\Rightarrow u^2 - 12u + 36 + v^2 = 4[u^2 + v^2 + 6v + 9]$$

$$\Rightarrow u^2 - 12u + 36 + v^2 = 4u^2 + 4v^2 + 24v + 36$$

$$\Rightarrow 0 = 3u^2 + 12u + 3v^2 + 24v$$

$$\Rightarrow 0 = u^2 + 4u + v^2 + 8v$$

$$\Rightarrow 0 = (u+2)^2 - 4 + (v+4)^2 - 16$$

$$\Rightarrow 20 = (u+2)^2 + (v+4)^2$$

$$\Rightarrow (u+2)^2 + (v+4)^2 = (2\sqrt{5})^2$$

$$\sqrt{20} = \sqrt{4}\sqrt{5} = 2\sqrt{5}$$

Therefore the circle with equation |z| = 2 is mapped onto a circle C, centre (-2, -4), radius $2\sqrt{5}$. So k = 2.

13 a We know that the transformation T given by $w = \frac{az+b}{z+c}$ maps the origin onto itself, so,

substituting w = z = 0 into T we get $0 = \frac{b}{c}$.

We have to assume $c \neq 0$ or else it is not possible to map the origin onto itself. Therefore b = 0.

We also know that this mapping reflects $z_1 = 1 + 2i$ in the real axis, i.e. $w_1 = 1 - 2i$. Substituting these values into T we obtain:

$$1 - 2\mathbf{i} = \frac{a + 2a\mathbf{i}}{1 + 2\mathbf{i} + c}$$

$$(1-2i)(1+2i+c) = a+2ai$$

$$1 + 2i + c - 2i + 4 - 2ci = a + 2ai$$

$$1 + 4 + c - 2ci = a + 2ai$$

$$5 + c - 2ci = a + 2ai$$

We now equate the real and complex parts:

$$5+c=a$$

$$-c = a$$

Solving simultaneously gives:

$$2c = -5$$

$$c = -\frac{5}{2}$$

$$a = \frac{5}{2}$$

So
$$a = \frac{5}{2}$$
, $b = 0$ and $c = -\frac{5}{2}$.

b We know that another complex number, ω , is mapped onto itself. i.e. we have:

$$\omega = \frac{\frac{5}{2}\omega}{\omega - \frac{5}{2}}$$

$$\omega^2 - \frac{5}{2}\omega = \frac{5}{2}\omega$$

$$\omega^2 = 5\omega$$

$$\omega^2 - 5\omega = 0$$

$$\omega(\omega-5)=0$$

$$\omega = 0$$
 or $\omega = 5$

 $\omega = 0$ is the origin, so the other number mapped onto itself is $\omega = 5$.

14 a
$$w = \frac{az+b}{z+c}$$
 $a, b, c \in \mathbb{R}$.

$$w = 1 \text{ when } z = 0$$
 (1)

$$w = 3 - 2i$$
 when $z = 2 + 3i$ (2)

$$(1) \Rightarrow 1 = \frac{a(0) + b}{0 + c} \Rightarrow 1 = \frac{b}{c} \Rightarrow c = b$$
 (3)

$$(3) \Rightarrow w = \frac{az+b}{z+b}$$

(2)
$$\Rightarrow 3-2i = \frac{a(2+3i)+b}{2+3i+b}$$

$$3-2i = \frac{(2a+b)+3ai}{(2+b)+3i}$$

$$(3-2i)[(2+b)+3i] = 2a+b+3ai$$

$$6+3b+9i-4i-2bi+6=2a+b+3ai$$

$$(12+3b)+(5-2b)i = (2a+b)+3ai$$

Equate real parts:
$$12 + 3b = 2a + b$$

$$\Rightarrow 12 = 2a - 2b$$

Equate imaginary parts: 5 - 2b = 3a

$$\Rightarrow$$
 5 = 3a + 2b (5)

(4)

$$(4) + (5):17 = 5a$$
$$\Rightarrow \frac{17}{5} = a$$

(5)
$$\Rightarrow 5 = \frac{51}{5} + 2b$$
$$\Rightarrow -\frac{26}{5} = 2b$$
$$\Rightarrow -\frac{13}{5} = b$$

As
$$b = c$$
 then $c = -\frac{13}{5}$

The values are
$$a = \frac{17}{5}$$
, $b = -\frac{13}{5}$, $c = -\frac{13}{5}$

14 b
$$w = \frac{\frac{17}{5}z - \frac{13}{5}}{z - \frac{13}{5}}$$

$$w = \frac{17z - 13}{5z - 13}$$

invariant points
$$\Rightarrow z = \frac{17z - 13}{5z - 13}$$

$$z(5z-13) = 17z-13$$

$$5z^2 - 13z = 17z - 13$$

$$5z^2 - 30z + 13 = 0$$

$$z = \frac{30 \pm \sqrt{900 - 4(5)(13)}}{10}$$
$$z = \frac{30 \pm \sqrt{900 - 260}}{10}$$
$$z = \frac{30 \pm \sqrt{640}}{10}$$
$$z = \frac{30 \pm \sqrt{64}\sqrt{10}}{10}$$

$$z = \frac{30 \pm \sqrt{310}}{10}$$
$$30 \pm 8\sqrt{10}$$

$$z = \frac{30 \pm 8\sqrt{10}}{10} = 3 \pm \frac{4\sqrt{10}}{5}$$

The exact values of the two points which remain invariant are

$$z = 3 + \frac{4\sqrt{10}}{5}$$
 and $z = 3 - \frac{4\sqrt{10}}{5}$

15
$$T: \quad w = \frac{z+i}{z}, \quad z \neq 0.$$

a the line y = x in the z-plane other than (0, 0)

$$w = \frac{z+i}{z}$$

$$\Rightarrow wz = z+i$$

$$\Rightarrow wz - z = i$$

$$\Rightarrow z(w-1) = i$$

$$\Rightarrow z = \frac{i}{w-1}$$

$$\Rightarrow z = \frac{i}{(u+iv)-1} = \frac{i}{(u-1)+iv}$$

$$\Rightarrow z = \left[\frac{i}{(u-1)+iv}\right] \left[\frac{(u-1)-iv}{(u-1)-iv}\right]$$

$$\Rightarrow z = \frac{i(u-1)+v}{(u-1)^2+v^2}$$

$$\Rightarrow z = \frac{v}{(u-1)^2+v^2} + i\frac{(u-1)}{(u-1)^2+v^2}$$
So $x + iy = \frac{v}{(u-1)^2+v^2} + i\frac{(u-1)}{(u-1)^2+v^2}$

$$\Rightarrow x = \frac{v}{(u-1)^2+v^2} \text{ and } y = \frac{u-1}{(u-1)^2+v^2}$$
Applying $y = x$, gives $\frac{u-1}{(u-1)^2+v^2} = \frac{v}{(u-1)^2+v^2}$

$$\Rightarrow u-1 = v$$

$$\Rightarrow v = u-1$$

Therefore the line *l* has equation v = u - 1.

15 b the line with equation x + y + 1 = 0 in the z-plane

$$x + y + 1 = 0 \Rightarrow \frac{v}{(u - 1)^2 + v^2} + \frac{u - 1}{(u - 1)^2 + v^2} + 1 = 0 \left[\times (u - 1)^2 + v^2 \right]$$

$$\Rightarrow v + (u - 1) + (u - 1)^2 + v^2 = 0$$

$$\Rightarrow v + u - 1 + u^2 - 2u + 1 + v^2 = 0$$

$$\Rightarrow u^2 + v^2 - u + v = 0$$

$$\Rightarrow \left(u - \frac{1}{2} \right)^2 - \frac{1}{4} + \left(v + \frac{1}{2} \right)^2 - \frac{1}{4} = 0$$

$$\Rightarrow \left(u - \frac{1}{2} \right)^2 + \left(v + \frac{1}{2} \right)^2 = \frac{1}{2}$$

$$\Rightarrow \left(u - \frac{1}{2} \right)^2 + \left(v + \frac{1}{2} \right)^2 = \left(\frac{\sqrt{2}}{2} \right)^2$$

The image of x + y + 1 = 0 under T is a circle C, centre $\left(\frac{1}{2}, -\frac{1}{2}\right)$, radius $\frac{\sqrt{2}}{2}$ with equation $u^2 + v^2 - u + v = 0$, as required.

 \mathbf{c}

Challenge

We want to find a transformation of the form $f(z) = az^* + b$, which reflects the z-plane in the line x + y = 1.

First note that points lying on the line will be mapped onto themselves.

This means that for any z = x + iy such that x + y = 1 we have f(z) = z.

Choose
$$z_1 = 1$$
, $z_2 = i$.

Both these points satisfy x + y = 1, so $f(z_1) = z_1$ and $f(z_2) = z_2$.

Therefore we have:

$$f(1) = a + b = 1$$

and
$$f(i) = -ai + b = i$$
.

Solving simultaneously:

$$-(1-b)i+b=i$$

$$-i + bi + b = i$$

$$b(1+i) = 2i$$

$$b = \frac{2i}{1+i} = \frac{2i}{1+i} \left(\frac{1-i}{1-i} \right) = \frac{2i(1-i)}{2} = i(1-i)$$

$$b = 1 + i$$

So
$$a = 1 - b = -i$$
 and $f(z) = -iz^* + 1 + i$