Recurrence relations 4B

1 a The recurrence relation is of the form $u_n = au_{n-1}$ with a = 2, so use the general form of the solution:

$$u_n = u_0 a^n$$
 so $u_n = 5(2^n)$

b The recurrence relation is of the form $b_n = ab_{n-1}$ with $a = \frac{5}{2}$, so use the general form of the solution:

$$b_n = b_1 a^{n-1}$$
 so $b_n = 4 \left(\frac{5}{2}\right)^{n-1}$

c The recurrence relation is of the form $d_n = ad_{n-1}$ with $a = -\frac{11}{10}$, so use the general form of the solution:

$$d_n = d_1 a^{n-1}$$
 so $d_n = 10 \left(-\frac{11}{10} \right)^{n-1}$

d The recurrence relation is of the form $x_{n+1} = ax_n$, so $x_n = ax_{n-1}$ with a = -3 so use the general form of the solution:

$$x_n = x_0 a^n$$
 so $x_n = 2(-3)^n$

2 a The recurrence relation is of the form $u_n = u_{n-1} + g(n)$ where g(n) = 3, so use the general form of the solution:

$$u_n = u_0 + \sum_{r=1}^{n} g(r)$$
 so $u_n = 5 + \sum_{r=1}^{n} 3 = 5 + 3n$

b The recurrence relation is of the form $x_n = x_{n-1} + g(n)$ where g(n) = n, so use the general form of the solution:

$$x_n = x_0 + \sum_{r=1}^n g(r)$$
 so $x_n = 2 + \sum_{r=1}^n r = 2 + \frac{n(n+1)}{2} = 2 + \frac{1}{2}n + \frac{1}{2}n^2$

c The recurrence relation is of the form $y_n = y_{n-1} + g(n)$ where $g(n) = n^2 - 2$, so use the general form of the solution:

$$y_n = y_0 + \sum_{r=1}^{n} g(r)$$
 so $y_n = 3 + \sum_{r=1}^{n} (r^2 - 2) = 3 + \sum_{r=1}^{n} r^2 - \sum_{r=1}^{n} 2 = 3 - 2n + \frac{1}{6} n(n+1)(2n+1)$

d Substitute n for n-1 throughout the recurrence relation:

$$s_n = s_{n-1} + 2(n-1) - 1 = s_{n-1} + 2n - 3$$

The recurrence relation is now of the form $s_n = s_{n-1} + g(n)$ where g(n) = 2n - 3 so use the general form of the solution:

$$s_n = s_0 + \sum_{r=1}^{n} g(r)$$
 so $s_n = 1 + \sum_{r=1}^{n} (2r - 3) = 1 + 2\sum_{r=1}^{n} r - \sum_{r=1}^{n} 3 = 1 + 2\frac{n(n+1)}{2} - 3n = 1 - 2n + n^2$

3 a The associated homogeneous recurrence relation is $a_n = 2a_{n-1}$, so the complementary function is

$$a_n = c(2^n)$$

Particular solution: $a_n = \lambda$

$$a_n = 2a_{n-1} + 1$$

$$\lambda = 2\lambda + 1$$

$$\Rightarrow \lambda = -1$$

- So a particular solution to the recurrence relation is $a_n = -1$.
- The general solution is $a_n = c(2^n) 1$

Since
$$a_1 = 1$$
, $1 = 2c - 1$ so $c = 1$

- The solution is $a_n = 2^n 1$
- **b** The associated homogeneous recurrence relation is $u_n = -u_{n-1}$, so the complementary function is $u_n = c(-1)^n$.
 - Particular solution: $u_n = \lambda$

$$u_n = -u_{n-1} + 2$$

$$\lambda = -\lambda + 2$$

$$\Rightarrow \lambda = 1$$

- So a particular solution to the recurrence relation is $u_n = 1$.
- The general solution is $u_n = c(-1)^n + 1$

Since
$$u_1 = 3$$
, $3 = -c + 1$ so $c = -2$

- The solution is $u_n = -2(-1)^n + 1$
- **c** The associated homogeneous recurrence relation is $h_n = 3h_{n-1}$, so the complementary function is $h_n = c(3^n)$.
 - Particular solution: $h_n = \lambda$

$$h_n = 3h_{n-1} + 5$$

$$\lambda = 3\lambda + 5$$

$$\Rightarrow \lambda = -\frac{5}{2}$$

- So a particular solution to the recurrence relation is $h_n = -\frac{5}{2}$
- The general solution is $h_n = c(3^n) \frac{5}{2}$

Since
$$h_0 = 1$$
, $1 = c - \frac{5}{2}$ so $c = \frac{7}{2}$

The solution is $h_n = \frac{7}{2}(3^n) - \frac{5}{2} = \frac{1}{2}(7 \times 3^n - 5)$

3 d The associated homogeneous recurrence relation is $b_n = -2b_{n-1}$, so the complementary function is $b_n = c(-2)^n$.

Particular solution:
$$b_n = \lambda$$

$$b_n = -2b_{n-1} + 6$$

$$\lambda = -2\lambda + 6$$

$$\Rightarrow \lambda = 2$$

So a particular solution to the recurrence relation is $b_n = 2$.

The general solution is
$$b_n = c(-2)^n + 2$$

Since
$$b_1 = 3$$
, $3 = -2c + 2$ so $c = -\frac{1}{2}$

The solution is
$$b_n = -\frac{1}{2}(-2)^n + 2 = 2 + (-2)^{n-1}$$

4 a n-1 teams play each other g_{n-1} times. When an nth team is added, this team has to play each of the other n-1 teams once so there are $g_{n-1}+n-1$ games in total.

Hence
$$g_n = g_{n-1} + n - 1$$
 and $g_1 = 0$

b Using the standard form of the solution when g_1 is given:

$$g_n = g_1 + \sum_{r=2}^{n} (r-1) = 0 + \sum_{r=2}^{n} r - \sum_{r=2}^{n} 1$$

Hence
$$g_n = \frac{n(n+1)}{2} - 1 - (n-1) = \frac{n(n-1)}{2}$$

5 a The associated homogeneous recurrence relation is $u_n = 4u_{n-1}$, so the complementary function is $u_n = c(4^n)$.

Particular solution:
$$u_n = \lambda$$

$$u_n = 4u_{n-1} - 1$$

$$\lambda = 4\lambda - 1$$

$$\Rightarrow \lambda = \frac{1}{3}$$

So a particular solution to the recurrence relation is $u_n = \frac{1}{3}$

The general solution is $u_n = c(4^n) + \frac{1}{3}$

- **b** i Since $u_1 = 3$, $3 = 4c + \frac{1}{3}$ so $c = \frac{2}{3}$ The solution is $u_n = \frac{2}{3}(4^n) + \frac{1}{3} = \frac{1}{3}(2 \times 4^n + 1)$
 - ii Since $u_1 = 0$, $0 = 4c + \frac{1}{3}$ so $c = -\frac{1}{12}$

The solution is
$$u_n = -\frac{1}{12}(4^n) + \frac{1}{3} = \frac{1}{3}(1 - 4^{n-1})$$

- **5 b** iii Since $u_1 = 200$, $200 = 4c + \frac{1}{3}$ so $c = \frac{599}{12}$ The solution is $u_n = \frac{599}{12}(4^n) + \frac{1}{3} = \frac{1}{3}(599 \times 4^{n-1} + 1)$
- **6** a The associated homogeneous recurrence relation is $u_n = 3u_{n-1}$, so the complementary function is $u_n = c(3^n)$.

Particular solution:
$$u_n = \lambda n + \mu$$

$$u_n = 3u_{n-1} + n$$

$$\lambda n + \mu = 3(\lambda(n-1) + \mu) + n$$

$$\lambda n + \mu = 3\lambda n - 3\lambda + 3\mu + n$$

Equating coefficients:

$$\lambda = 3\lambda + 1 \Rightarrow \lambda = -\frac{1}{2}$$

$$\mu = -3\lambda + 3\mu \Rightarrow \mu = -\frac{3}{4}$$

- So a particular solution to the recurrence relation is $u_n = -\frac{1}{2}n \frac{3}{4}$
- The general solution is $u_n = c(3^n) \frac{1}{2}n \frac{3}{4}$
- **b** Since $u_1 = 5$, $5 = 3c \frac{1}{2} \frac{3}{4}$ so $c = \frac{25}{12}$

The solution is
$$u_n = \frac{25}{12}(3^n) - \frac{1}{2}n - \frac{3}{4} = \frac{1}{4}(25 \times 3^{n-1} - 2n - 3)$$

7 **a** $u_1 = 0.6 \times 7 + 4 = 8.2$

$$u_2 = 0.6 \times 8.2 + 4 = 8.92$$

$$u_3 = 0.6 \times 8.92 + 4 = 9.352$$

b The associated homogeneous recurrence relation is $u_n = 0.6u_{n-1}$, so the complementary function is $u_n = c(0.6^n)$.

Particular solution:
$$u_n = \lambda$$

$$u_n = 0.6u_{n-1} + 4$$

$$\lambda = 0.6\lambda + 4$$

$$\Rightarrow \lambda = 10$$

So a particular solution to the recurrence relation is $u_n = 10$

The general solution is
$$u_n = c(0.6^n) + 10$$

Since
$$u_0 = 7$$
, $7 = c + 10$ so $c = -3$

The solution is
$$u_n = -3(0.6^n) + 10 = 10 - 3(0.6^n)$$

c $10-3(0.6^n) > 9.9 \Rightarrow 0.6^n < \frac{1}{30}$

$$n \log 0.6 < \log \left(\frac{1}{30}\right) \Rightarrow n > 6.658... \Rightarrow n = 7$$

- 8 a Since the population falls by 5% each year, and 20 deer are added, a recurrence relation is $D_n = 0.95D_{n-1} + 20$ with $D_0 = 200$.
 - **b** The associated homogeneous recurrence relation is $D_n = 0.95D_{n-1}$, so the complementary function is $D_n = c(0.95^n)$.

Particular solution: $D_n = \lambda$

$$D_n = 0.95D_{n-1} + 20$$

$$\lambda = 0.95\lambda + 20$$

$$\Rightarrow \lambda = 400$$

So a particular solution to the recurrence relation is $D_n = 400$

The general solution is $D_n = c(0.95^n) + 400$

Since
$$D_0 = 200$$
, $200 = c + 400$ so $c = -200$

The solution is $D_n = -200(0.95^n) + 400 = 200(2 - 0.95^n)$

- **c** As $n \to \infty$, $0.95^n \to 0$ so the deer population approaches $200 \times 2 = 400$.
- 9 $u_n = 4u_{n-1} 3$

The associated homogeneous recurrence relation is $u_n = 4u_{n-1}$, so the complementary function is $u_n = c(4^n)$.

Particular solution: $u_n = \lambda$

$$u_n = 4u_{n-1} - 3$$

$$\lambda = 4\lambda - 3$$

$$\Rightarrow \lambda = 1$$

So a particular solution to the recurrence relation is $u_n = 1$

The general solution is $u_n = c(4^n) + 1$

Since
$$u_0 = 7$$
, $7 = c + 1$ so $c = 6$

The solution is $u_n = 6(4^n) + 1$

10 $u_0 = u_1 - 2^1 = 5 - 2 = 3$

Now use the formula $u_n = u_0 + \sum_{r=1}^{n} g(r)$:

$$u_n = 3 + \sum_{r=1}^{n} 2^r = 3 + \frac{2(1-2^n)}{1-2} = 3 - 2 + 2 \times 2^n = 2^{n+1} + 1$$

11 The associated homogeneous recurrence relation is $u_n = 4u_{n-1}$, so the complementary function is $u_n = c(4^n)$.

Particular solution: $u_n = \lambda n + \mu$

$$u_n = 4u_{n-1} + 2n$$

$$\lambda n + \mu = 4(\lambda(n-1) + \mu) + 2n$$

$$\lambda n + \mu = 4\lambda n - 4\lambda + 4\mu + 2n$$

Equating coefficients:

$$\lambda = 4\lambda + 2 \Longrightarrow \lambda = -\frac{2}{3}$$

$$\mu = -4\lambda + 4\mu \Rightarrow \mu = -\frac{8}{9}$$

So a particular solution to the recurrence relation is $u_n = -\frac{2}{3}n - \frac{8}{9}$

The general solution is $u_n = c(4^n) - \frac{2}{3}n - \frac{8}{9}$

Since
$$u_0 = 7$$
, $7 = c - \frac{8}{9}$ so $c = \frac{71}{9}$

The solution is
$$u_n = \frac{71}{9}(4^n) - \frac{2}{3}n - \frac{8}{9} = \frac{1}{9}(71 \times 4^n - 6n - 8)$$

12 a The associated homogeneous recurrence relation is $u_n = 2u_{n-1}$, so the complementary function is $u_n = c(2^n)$.

Particular solution: $u_n = \lambda$

$$u_n = 2u_{n-1} - 1005$$

$$\lambda = 2\lambda - 1005$$

$$\Rightarrow \lambda = 1005$$

So a particular solution to the recurrence relation is $u_n = 1005$

The general solution is $u_n = c(2^n) + 1005$

Since
$$u_0 = 1000$$
, $1000 = c + 1005$ so $c = -5$

The solution is $u_n = -5(2^n) + 1005 = -5(2^n - 201)$

b $1005 - 5(2^n) < 0 \Rightarrow 2^n > 201$

$$n \log 2 > \log(201) \Rightarrow n > 7.65 \Rightarrow n = 8$$

Hence
$$u_8 = -5(2^8 - 201) = -275$$

13 a The associated homogeneous recurrence relation is $u_n = 2u_{n-1}$, so the complementary function is $u_n = c(2^n)$.

Particular solution: $u_n = \lambda n 2^n$

$$u_{n} = 2u_{n-1} - 2^{n}$$

$$\lambda n(2^{n}) = 2\lambda (n-1)2^{n-1} - 2^{n}$$

$$\lambda n(2^{n}) = 2\lambda n(2^{n-1}) - 2\lambda (2^{n-1}) - 2^{n}$$

$$\lambda n(2^{n}) = \lambda n(2^{n}) - \lambda (2^{n}) - 2^{n}$$

$$\Rightarrow \lambda = -1$$

So a particular solution to the recurrence relation is $u_n = -n(2^n)$

The general solution is $u_n = c(2^n) - n(2^n) = 2^n(c-n)$

- **b** Since $u_1 = 3$, 3 = 2(c 1) so $c = \frac{5}{2}$ The solution is $u_n = 2^n \left(\frac{5}{2} - n\right)$
- **14 a** $u_1 = k \times 0 + 1 = 1$ $u_2 = k \times 1 + 1 = k + 1$ $u_3 = k \times (k+1) + 1 = k^2 + k + 1$
 - **b** The associated homogeneous recurrence relation is $u_n = ku_{n-1}$, so the complementary function is $u_n = c(k^n)$.

Particular solution: $u_n = \lambda$

$$u_n = ku_{n-1} + 1$$
$$\lambda = k\lambda + 1$$
$$\Rightarrow \lambda = \frac{1}{1 - k}$$

So a particular solution to the recurrence relation is $u_n = \frac{1}{1-k}$

The general solution is $u_n = c(k^n) + \frac{1}{1-k}$

Since
$$u_0 = 0$$
, $0 = c + \frac{1}{1-k}$ so $c = -\frac{1}{1-k}$

The solution is $u_n = -\frac{1}{1-k}(k^n) + \frac{1}{1-k} = \frac{k^n - 1}{k-1}$

- **c** i When k > 1, $u_n \to \infty$
 - ii When -1 < k < 1, $u_n \to -\frac{1}{k-1} = \frac{1}{1-k}$
 - iii When k = -1, u_n alternately takes the values 0 and 1
 - iv When k < -1, u_n is divergent to $\pm \infty$ and the sign alternates.

15 a
$$\sum_{r=1}^{n} (6r+1) = 6\sum_{r=1}^{n} r + \sum_{r=1}^{n} 1 = 3n(n+1) + n = 3n^2 + 4n$$

b
$$u_n = u_0 + \sum_{r=1}^{n} g(r)$$
 so using part **a**:
 $u_n = 2 + 3n^2 + 4n$

c
$$561 = 2 + 3n^2 + 4n \Rightarrow 3n^2 + 4n - 559 = 0$$

Hence $n = -\frac{43}{3}$ or 13 and since $n \in \mathbb{Z}^+$, $n = 13$

16 a The recurrence relation is of the form $u_n = u_{n-1} + g(n)$ where $g(n) = -6n^2$ so use the general form of the solution:

$$u_n = u_0 + \sum_{r=1}^{n} g(r)$$
 so $u_n = 89 - \sum_{r=1}^{n} 6r^2 = 89 - 6\sum_{r=1}^{n} r^2 = 89 - n(n+1)(2n+1)$

b
$$89 - n(n+1)(2n+1) < 0 \Rightarrow 2n^3 + 3n^2 + n - 89 > 0$$

The first integer value of n for which this is true is $n = 4$ therefore $u_4 = 89 - 4(5)(9) = -91$

- **c** Adding an odd number (89) to an even number (n(n+1)(2n+1)) always gives an odd number.
- 17 a The recurrence relation is of the form $u_n = u_{n-1} + g(n)$ where g(n) = -2n so use the general form of the solution:

$$u_n = u_0 + \sum_{r=1}^{n} g(r)$$
 so $u_n = 3 - 2\sum_{r=1}^{n} r = 3 - n(n+1)$

b Solving
$$3 - n(n+1) = -103 \Rightarrow n^2 + n - 106 = 0$$
 which has no integer solutions

c
$$3-k(k+1) = -459 \Rightarrow k^2 + k - 462 = 0$$

Hence $k = 21$ or -22 and since k has to be positive, $k = 21$

18 a Since the interest added is 1.5% each month, and Alison pays off *P* per month, a recurrence relation is:

$$u_n = 1.015u_{n-1} - P$$
 with $u_0 = 2000$

18 b The associated homogeneous recurrence relation is $u_n = 1.015u_{n-1}$, so the complementary function is $u_n = c(1.015^n)$.

Particular solution: $u_n = \lambda$

$$u_n = 1.015u_{n-1} - P$$

$$\lambda = 1.015\lambda - P$$

$$\Rightarrow \lambda = \frac{200}{3}P$$

So a particular solution to the recurrence relation is $u_n = \frac{200}{3}P$

The general solution is $u_n = c(1.015^n) + \frac{200}{3}P$

Since
$$u_0 = 2000$$
, $2000 = c + \frac{200}{3}P$ so $c = 2000 - \frac{200}{3}P$

The solution is
$$u_n = \left(2000 - \frac{200}{3}P\right)(1.015^n) + \frac{200}{3}P = \frac{200}{3}(1.015^n(30 - P) + P)$$

c When n = 18, $u_n = 0$:

$$\frac{200}{3}(1.015^{18}(30-P)+P)=0 \Rightarrow 30\times1.015^{18}-P\times1.015^{18}+P=0$$

Hence
$$P = \frac{30 \times 1.015^{18}}{1.015^{18} - 1} = 127.611...$$

So
$$P = £127.61$$

Challenge

- a The first disk cannot be moved from A to C in one jump, so must move from A to B, then B to C.
- **b** The sequence of moves is as follows: A to B, B to C, A to B, C to B, B to A, B to C, A to B and B to C
- c Transfer n-1 disks from A to $C(H_{n-1} \text{ moves})$, then move nth disk from A to B (1 move), then transfer n-1 disks from C to $A(H_{n-1} \text{ moves})$, then move nth disk from B to C(1 move), then transfer n-1 disks from A to $C(H_{n-1} \text{ moves})$. In total, therefore, $H_n = 3H_{n-1} + 2$.
- **d** i The associated homogeneous recurrence relation is $H_n = 3H_{n-1}$ so the complementary function is $H_n = c(3^n)$

Particular solution: $u_n = \lambda$

$$H_n = 3H_{n-1} + 2$$

$$\lambda = 3\lambda + 2$$

$$\Rightarrow \lambda = -1$$

So a particular solution to the recurrence relation is $H_n = -1$

The general solution is $H_n = c(3^n) - 1$

Since
$$H_1 = 2$$
, $2 = 3c - 1$ so $c = 1$

The solution is $H_n = 3^n - 1$

ii When n = 10, $H_{10} = 3^{10} - 1 = 59048$