Matrix algebra 5A

1 a
$$\mathbf{A} - \lambda \mathbf{I} = \begin{pmatrix} 2 & 4 \\ 1 & 5 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} 2 - \lambda & 4 \\ 1 & 5 - \lambda \end{pmatrix}$$

$$\begin{vmatrix} 2 - \lambda & 4 \\ 1 & 5 - \lambda \end{vmatrix} = (2 - \lambda)(5 - \lambda) - 4$$

$$= 10 - 7\lambda + \lambda^2 - 4 = \lambda^2 - 7\lambda + 6 = (\lambda - 1)(\lambda - 6)$$

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0 \Rightarrow (\lambda - 1)(\lambda - 6) = 0 \Rightarrow \lambda = 1, 6$$

The eigenvalues are 1 and 6.

For
$$\lambda = 1$$

$$\begin{pmatrix} 2 & 4 \\ 1 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 1 \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} 2x + 4y \end{pmatrix} \quad (x)$$

$$\begin{pmatrix} 2x + 4y \\ x + 5y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

Equating the upper elements

$$2x + 4y = x \Rightarrow x = -4y$$

Let
$$y = 1$$
, then $x = -4$

An eigenvector corresponding to the eigenvalue 1 is $\begin{pmatrix} -4\\1 \end{pmatrix}$.

For
$$\lambda = 6$$

$$\begin{pmatrix} 2 & 4 \\ 1 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 6 \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} 2x + 4y \\ x + 5y \end{pmatrix} = \begin{pmatrix} 6x \\ 6y \end{pmatrix}$$

Equating the upper elements

$$2x + 4y = 6x \Rightarrow y = x$$

Let
$$x = 1$$
, then $y = 1$

An eigenvector corresponding to the eigenvalue 6 is $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

1 **b**
$$\mathbf{A} - \lambda \mathbf{I} = \begin{pmatrix} 4 & -1 \\ -1 & 4 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} 4 - \lambda & -1 \\ -1 & 4 - \lambda \end{pmatrix}$$

$$\begin{vmatrix} 4-\lambda & -1 \\ -1 & 4-\lambda \end{vmatrix} = (4-\lambda)^2 - 1$$
$$= 16 - 8\lambda + \lambda^2 - 1 = \lambda^2 - 8\lambda + 15 = (\lambda - 3)(\lambda - 5)$$
$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0 \Rightarrow (\lambda - 3)(\lambda - 5) = 0 \Rightarrow \lambda = 3.5$$

The eigenvalues are 3 and 5.

For
$$\lambda = 3$$

$$\begin{pmatrix} 4 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 3 \begin{pmatrix} x \\ y \end{pmatrix}$$
$$\begin{pmatrix} 4x - y \\ -x + 4y \end{pmatrix} = \begin{pmatrix} 3x \\ 3y \end{pmatrix}$$

Equating the upper elements

$$4x - y = 3x \Rightarrow y = x$$

Let
$$x = 1$$
, then $y = 1$

An eigenvector corresponding to the eigenvalue 3 is $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

For
$$\lambda = 5$$

$$\begin{pmatrix} 4 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 5 \begin{pmatrix} x \\ y \end{pmatrix}$$
$$\begin{pmatrix} 4x - y \\ -x + 4y \end{pmatrix} = \begin{pmatrix} 5x \\ 5y \end{pmatrix}$$

Equating the upper elements

$$4x + y = 5x \Rightarrow y = -x$$

Let
$$x = 1$$
, then $y = -1$

An eigenvector corresponding to the eigenvalue 5 is $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

1 c
$$\mathbf{A} - \lambda \mathbf{I} = \begin{pmatrix} 3 & -2 \\ 0 & 4 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} 3 - \lambda & -2 \\ 0 & 4 - \lambda \end{pmatrix}$$

$$\begin{vmatrix} 3-\lambda & -2 \\ 0 & 4-\lambda \end{vmatrix} = (3-\lambda)(4-\lambda)$$

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0 \Longrightarrow (3 - \lambda)(4 - \lambda) = 0 \Longrightarrow \lambda = 3, 4$$

The eigenvalues are 3 and 4.

For $\lambda = 3$

$$\begin{pmatrix} 3 & -2 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 3 \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} 3x - 2y \\ 4y \end{pmatrix} = \begin{pmatrix} 3x \\ 3y \end{pmatrix}$$

Equating the lower elements

$$4y = 3y \Rightarrow y = 0$$

As x can take any non-zero value, let x = 1.

An eigenvector corresponding to the eigenvalue 3 is $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

For $\lambda = 4$

$$\begin{pmatrix} 3 & -2 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 4 \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} 3x - 2y \\ 4y \end{pmatrix} = \begin{pmatrix} 4x \\ 4y \end{pmatrix}$$

Equating the upper elements

$$3x - 2y = 4x \Rightarrow x = -2y$$

Let
$$y = 1$$
, then $x = -2$

An eigenvector corresponding to the eigenvalue 4 is $\begin{pmatrix} -2 \\ 1 \end{pmatrix}$.

2 a
$$M = \begin{pmatrix} -2 & 1 \ -1 & 0 \end{pmatrix}$$

$$M - \lambda I = \begin{pmatrix} -2 & 1 \ -1 & 0 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \ 0 & \lambda \end{pmatrix} = \begin{pmatrix} 2 - \lambda & 1 \ -1 & -\lambda \end{pmatrix}$$

$$\det(M - \lambda I) = \begin{vmatrix} -2 - \lambda & 1 \ -1 & -\lambda \end{vmatrix}$$

$$= (-2 - \lambda)(-\lambda) + 1$$

$$= \lambda^2 + 2\lambda + 1 = (\lambda + 1)^2$$

$$\det(M - \lambda I) = 0 \Rightarrow \lambda = -1$$

Hence $\lambda = -1$ is a repeated eigenvalue

$$\begin{pmatrix} -2 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = - \begin{pmatrix} x \\ y \end{pmatrix}$$

Equating lower elements: -x = -y, or x = y

So the required eigenvector is a multiple of $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Therefore the simplest eigenvector is $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

$$\mathbf{b} \quad N = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$$

$$N - \lambda I = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} 4 - \lambda & 0 \\ 0 & 4 - \lambda \end{pmatrix}$$

$$\det(N - \lambda I) = \begin{vmatrix} 4 - \lambda & 0 \\ 0 & 4 - \lambda \end{vmatrix}$$

$$= (4 - \lambda)^2$$

$$\det(N - \lambda I) = 0 \Rightarrow \lambda = 4$$

Hence $\lambda = 4$ is a repeated eigenvalue.

$$\begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4x \\ 4y \end{pmatrix}$$

Equating upper elements: 4x = 4x

So you can choose two eigenvectors that are linearly independent

Therefore the simplest eigenvectors are $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

3 a
$$A = \begin{pmatrix} -3 & -1 \\ 4 & -3 \end{pmatrix}$$

$$A - \lambda I = \begin{pmatrix} -3 & -1 \\ 4 & -3 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} -3 - \lambda & -1 \\ 4 & -3 - \lambda \end{pmatrix}$$

$$\det(A - \lambda I) = \begin{vmatrix} -3 - \lambda & -1 \\ 4 & -3 - \lambda \end{vmatrix}$$

$$= (-3 - \lambda)^2 + 4$$

$$\det(A - \lambda I) = 0 \Longrightarrow = (-3 - \lambda)^2 + 4 = 0$$

$$\lambda^2 + 6\lambda + 13 = 0$$

$$(\lambda + 3)^2 + 4 = 0$$

$$\lambda + 3 = \pm 2i$$

$$\lambda = -3 \pm 2i$$

Hence the eigenvalues are $\lambda = -3 \pm 2i$

Taking
$$\lambda = -3 + 2i$$

$$\begin{pmatrix} -2 & 1 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = (-3 + 2i) \begin{pmatrix} x \\ y \end{pmatrix}$$

Equating upper elements:

$$-3x - y = (-3 + 2i)x$$
$$-3x - y = -3x + 2ix$$

$$x = -\frac{y}{2i} = \frac{iy}{2}$$

Choosing
$$y = 1$$
 gives $x = \frac{i}{2}$

So a required eigenvector is $\begin{pmatrix} \frac{i}{2} \\ 1 \end{pmatrix}$

Taking
$$\lambda = -3 - 2i$$

$$\begin{pmatrix} -2 & 1 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = (-3 - 2i) \begin{pmatrix} x \\ y \end{pmatrix}$$

Equating upper elements:

$$-3x - y = \left(-3 - 2i\right)x$$

$$-3x - y = -3x - 2ix$$

$$y = 2ix$$

$$x = \frac{y}{2i} = -\frac{iy}{2}$$

Choosing
$$y = 1$$
 gives $x = -\frac{i}{2}$

So a required eigenvector is $\begin{pmatrix} -\frac{i}{2} \\ 1 \end{pmatrix}$

3 b
$$B = \begin{pmatrix} 2 & -1 \\ 2 & 4 \end{pmatrix}$$

$$B - \lambda I = \begin{pmatrix} 2 & -1 \\ 2 & 4 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} 2 - \lambda & -1 \\ 2 & 4 - \lambda \end{pmatrix}$$

$$\det(N - \lambda I) = \begin{vmatrix} 2 - \lambda & -1 \\ 2 & 4 - \lambda \end{vmatrix}$$

$$= (2 - \lambda)(4 - \lambda) + 2 = 0$$

$$\det(N - \lambda I) = 0$$

$$\lambda^2 - 6\lambda + 10 = 0$$

$$(\lambda - 3)^2 + 1 = 0$$

Hence the eigenvalues are $\lambda = 3 \pm i$

Taking
$$\lambda = 3 + i$$

$$\begin{pmatrix} -2 & 1 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = (3 + i) \begin{pmatrix} x \\ y \end{pmatrix}$$

Equating upper elements:

$$2x - y = (3+i)x$$
$$2x - y = 3x + ix$$

$$2x - y = 3x + i$$

$$-y = x(1+i)$$

 $\lambda = 3 \pm i$

$$x = -\frac{y}{1+i} = \frac{-y+i}{2}$$

Choosing
$$y = 1$$
 gives $x = \frac{-1+i}{2}$

So a required eigenvector is $\begin{pmatrix} -1+i\\2\\1 \end{pmatrix}$

Taking
$$\lambda = 3 - i$$

$$\begin{pmatrix} -2 & 1 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = (3 - i) \begin{pmatrix} x \\ y \end{pmatrix}$$

Equating upper elements:

$$2x - y = (3 - i)x$$

$$2x - y = 3x - ix$$

$$-y = x(1-i)$$

$$x = -\frac{y}{1-i} = \frac{-y-i}{2}$$

Choosing
$$y = 1$$
 gives $x = \frac{-1 - i}{2}$

So a required eigenvector is $\begin{pmatrix} -1-i\\2\\1 \end{pmatrix}$

4 a
$$\mathbf{A} - \lambda \mathbf{I} = \begin{pmatrix} 3 & 4 \\ -2 & 9 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} 3 - \lambda & 4 \\ -2 & 9 - \lambda \end{pmatrix}$$

$$\begin{vmatrix} 3 - \lambda & 4 \\ -2 & 9 - \lambda \end{vmatrix} = (3 - \lambda)(9 - \lambda) + 8$$

$$= 27 - 12\lambda + \lambda^2 + 8 = \lambda^2 - 12\lambda + 35 = (\lambda - 5)(\lambda - 7)$$

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0 \Rightarrow (\lambda - 5)(\lambda - 7) = 0 \Rightarrow \lambda = 5, 7$$

The eigenvalues of A are 5 and 7.

b For
$$\lambda = 5$$

$$\begin{pmatrix} 3 & 4 \\ -2 & 9 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 5 \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} 3x + 4y \\ -2x + 9y \end{pmatrix} = \begin{pmatrix} 5x \\ 5y \end{pmatrix}$$

Equating the upper elements

$$3x + 4y = 5x \Rightarrow 4y = 2x \Rightarrow y = \frac{1}{2}x$$

For
$$\lambda = 7$$

$$\begin{pmatrix} 3 & 4 \\ -2 & 9 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 7 \begin{pmatrix} x \\ y \end{pmatrix}$$
$$\begin{pmatrix} 3x + 4y \\ -2x + 9y \end{pmatrix} = \begin{pmatrix} 7x \\ 7y \end{pmatrix}$$

Equating the upper elements

$$3x + 4y = 7x \Rightarrow 4y = 4x \Rightarrow y = x$$

Cartesian equations of the invariant lines are $y = \frac{1}{2}x$ and y = x.

5
$$M = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

 $\begin{vmatrix} 1 - \lambda & 1 \\ 0 & 1 - \lambda \end{vmatrix} = 0$
 $(1 - \lambda)^2 = 0$
 $\lambda = 1$

Therefore $\lambda = 1$ is a repeated eigenvalue.

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

Equating upper elements:

$$x + y = x \Rightarrow y = 0$$

Choosing x = 1, the corresponding eigenvector will therefore be $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$

6
$$A = \begin{pmatrix} 3 & k \\ 1 & -1 \end{pmatrix}$$
$$\begin{vmatrix} 3 - \lambda & k \\ 1 & -1 - \lambda \end{vmatrix} = 0$$
$$(3 - \lambda)(-1 - \lambda) - k = 0$$
$$\lambda^2 - 2\lambda - (3 + k) = 0$$

Repeated eigenvalue implies $b^2 - 4ac = 0$

$$4+4(3+k)=0$$

$$4k + 16 = 0$$

$$k = -4$$

7
$$M = \begin{pmatrix} 1 & -1 \\ k & -3 \end{pmatrix}$$
$$\begin{vmatrix} 1 - \lambda & -1 \\ k & -3 - \lambda \end{vmatrix} = 0$$
$$(1 - \lambda)(-3 - \lambda) + k = 0$$
$$\lambda^2 + 2\lambda + (k - 3) = 0$$

Complex eigenvalue implies $b^2 - 4ac < 0$

$$4-4(k-3)<0$$

$$4 - 4k + 12 < 0$$

8
$$A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$
$$\begin{vmatrix} a - \lambda & b \\ -b & a - \lambda \end{vmatrix} = 0$$
$$(a - \lambda)^{2} + b^{2} = 0$$
$$(a - \lambda)^{2} = -b^{2}$$
$$a - \lambda = \pm bi$$
$$\lambda = a \pm bi \text{ as required}$$

9 Let *T* be the transformation matrix.

Then
$$T = \begin{pmatrix} 5 \\ 2 \end{pmatrix} = \begin{pmatrix} -15 \\ -6 \end{pmatrix} = -3 \begin{pmatrix} 5 \\ 2 \end{pmatrix}$$

$$T = \begin{pmatrix} -3 & 0 \\ 0 & -3 \end{pmatrix}$$

and an eigenvector is $\binom{5}{2}$ and its corresponding eigenvalue is -3

10 a
$$\begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} 2 - \lambda & -1 \\ 1 & 2 - \lambda \end{pmatrix}$$
$$\begin{vmatrix} 2 - \lambda & -1 \\ 1 & 2 - \lambda \end{vmatrix} = 0$$
$$= (2 - \lambda)^2 + 1 = 0$$
$$2 - \lambda = \pm i$$
$$\lambda = 2 \pm i, \text{ so there are no real eigenvalues.}$$

b To find the eigenvectors:

Taking
$$\lambda = 2 + i$$

$$\begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = (2 + i) \begin{pmatrix} x \\ y \end{pmatrix}$$

Equating upper elements:

$$2x - y = (2+i)x$$
$$y = -ix$$

Choosing
$$y = 1$$
 gives $x = \frac{-1}{i} = i$

So a required eigenvector is $\begin{pmatrix} i \\ 1 \end{pmatrix}$

Equating upper elements:

$$2x - y = (2 - i)x$$
$$y = ix$$

Choosing
$$y = 1$$
 gives $x = \frac{1}{i} = -i$

So a required eigenvector is $\begin{pmatrix} -i \\ 1 \end{pmatrix}$

Neither eigenvector corresponds to a straight line in \mathbb{R}^2 , so the transformation has no invariant lines.

11 a
$$M = \begin{pmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{pmatrix}$$

 $M - \lambda I = \begin{pmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} -\frac{3}{5} - \lambda & \frac{4}{5} - \lambda \\ \frac{4}{5} - \lambda & \frac{3}{5} - \lambda \end{pmatrix}$

$$\det(M - \lambda I) = \begin{vmatrix} -\frac{3}{5} - \lambda & \frac{4}{5} - \lambda \\ \frac{4}{5} - \lambda & \frac{3}{5} - \lambda \end{vmatrix}$$

$$= \begin{pmatrix} -\frac{3}{5} - \lambda \end{pmatrix} \begin{pmatrix} \frac{3}{5} - \lambda \end{pmatrix} - \frac{16}{25}$$

$$\det(M - \lambda I) = 0 \Rightarrow \begin{pmatrix} -\frac{3}{5} - \lambda \end{pmatrix} \begin{pmatrix} \frac{3}{5} - \lambda \end{pmatrix} - \frac{16}{25} = 0$$

$$\lambda^2 - 1 = 0$$

$$\lambda^2 = 1$$

$$\lambda = \pm 1$$

Hence the eigenvalues are $\lambda = \pm 1$

To find the eigenvectors:

Taking
$$\lambda = 1$$

$$\begin{pmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

Equating upper elements:

$$-\frac{3x}{5} + \frac{4y}{5} = x$$
$$y = 2x$$

Choosing x = 1 gives y = 2

So a required eigenvector is $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$

Taking
$$\lambda = -1$$

$$\begin{pmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = -\begin{pmatrix} x \\ y \end{pmatrix}$$

Equating upper elements:

$$-\frac{3x}{5} + \frac{4y}{5} == x$$
$$x = 2y$$

Choosing
$$x = 2$$
 gives $y = 1$

So a required eigenvector is $\begin{pmatrix} -2\\1 \end{pmatrix}$

11 b
$$\binom{1}{2} \cdot \binom{-2}{1} = -2 + 2 = 0$$

Therefore the eigenvectors are perpendicular

c y = 2x corresponds to the eigenvector $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$, and $\lambda = 1$ so every point on the line y = 2x is invariant

d
$$M^2 = \begin{pmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{pmatrix} \begin{pmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, the identity matrix.

Therefore M must be a reflection in the line y = 2x.

12 Suppose λ is an eigenvalue of matrix A and x is its associated eigenvector. Then $Ax = \lambda x$

Therefore
$$A^2x = A(Ax) = A(\lambda x) = \lambda(Ax) = \lambda(\lambda x) = \lambda^2 x$$

Therefore λ^2 is an eigenvalue of A^2

13 Let $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and let $\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}$

You are given
$$M\mathbf{x} = 0$$

So
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

Equating upper elements:
$$ax + by = 0 \Rightarrow y = -\frac{ax}{b}$$

Equating lower elements:
$$cx + dy = 0 \Rightarrow y = -\frac{cx}{d}$$

Therefore
$$\frac{a}{b} = \frac{c}{d}$$

$$ad = bc$$

$$ad - bc = 0$$

Therefore
$$\det M = 0$$

Therefore M is singular

Challenge

$$T = \begin{pmatrix} -1 & 0 \\ -2 & 1 \end{pmatrix}$$
$$\begin{vmatrix} -1 - \lambda & 0 \\ -2 & 1 - \lambda \end{vmatrix} = 0$$
$$(-1 - \lambda)(1 - \lambda) = 0$$

Therefore the eigenvalues are $\lambda = 1$ and $\lambda = -1$

Taking
$$\lambda = 1$$

$$\begin{pmatrix} -1 & 0 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

Equating upper elements:

$$-x = x \Rightarrow x = 0$$

Choosing y = 1, the corresponding eigenvector will therefore be $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Therefore all points on the y-axis are invariant.

Taking
$$\lambda = -1$$

$$\begin{pmatrix} -1 & 0 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = -\begin{pmatrix} x \\ y \end{pmatrix}$$

Equating lower elements:

$$-2x + y = -y \Rightarrow x = y$$

Choosing y = 1, the corresponding eigenvector will therefore be $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Therefore all lines parallel to y = x will stay parallel to y = x under TSince every line will cross the y-axis at one point, and this point is invariant under T, every line of the form y = x + k is an invariant line of T, and there are infinitely many of these.