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Review exercise 1 

1 We wish to prove that for any natural number we have 

  3
3 2n n  

 We proceed by induction and the division algorithm. 

 For the base case 1n  we have 3 2 3n n  so the claim is true. 

 Now suppose the claim is true for 1n . 

 Then by the division algorithm we have    3
1 2 1 3n n q     for some natural number q  

 Now we can write 

 

   

       

        
    

33

3 2

3 2

2

2 1 1 2 1 1

1 3 1 3 1 1 2 1 2

1 2 1 3 1 1 1

3 3 1 1 1

3 '

n n n n

n n n n

n n n n

q n n

q

      

         

        

     



 

 for some natural number 'q . 

 Hence the induction is complete and the claim is true. 
 

2 a Paul is incorrect. Suppose he was correct, then we could write 

  1096 43 17q  for a natural number q , in particular we have 

  
1096 17

43
q


  

  and this is not a natural number 

 
 b Applying the division algorithm gives 
  514098 178 2873 2704    

  Carrying out the Euclidean algorithm gives 

  2873 2704 169   

  This is a non-zero remainder so we need to do another step: 

  2704 16 169   

  Hence  gcd 2873,514098 169  

  So the fraction can be simplified further 
 

3 We wish to compute  gcd 808,2256 using the Euclidean Algorithm. 

 The first step is to write: 

 2256 2 808 640    

 Then: 

 808 640 168   

 640 3 168 136    

 168 136 32   

 136 4 32 8     

 Finally we have 

 32 4 8   

 Hence  gcd 808,2256 8   
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4 a We will use the Euclidean algorithm to compute  gcd 201,5365  

  We have 

  5365 26 201 139    

  201 139 62   

  139 2 62 15    

  62 4 15 2    

  15 7 2 1    
  2 2 1   

  Hence  gcd 201,5365 1  

 
 b Working backwards through the Euclidean algorithm: 

  
 

1 15 7 2

15 7 62 4 15 29 15 7 62

  

        
 

   29 139 2 62 7 62 29 139 65 62           

   29 139 65 201 139 94 139 65 201          

   94 5365 26 201 65 201       

  94 5365 2509 201     

 

5 We wish to find integers  and x y  such that 

 142 1023 1x y   

 

 We apply the Euclidean algorithm then work backwards: 

 

1023 7 142 29

142 4 29 26

29 26 3

26 8 3 2

3 2 1

2 2 1

  

  

 

  

 

 

 

 

 Now working backwards: 
 

 

 
 

 
 

1 3 2

3 26 8 3 9 3 26

9 29 26 26 9 29 10 26

9 29 10 142 4 29 49 29 10 142

49 1023 7 42 10 142

49 1023 353 142

 

      

       

         

     

   

 

 

6 a Any weight that can be measured using this method is of the form 75 270 ,x y  where x  and y are 

integers but have opposite sign. The smallest weight that can be measured is the smallest positive 

linear combination of this form, which is  gcd 75,270 15.  
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6 b Applying the Euclidean algorithm: 

  270 3 75 45     

  75 45 30    

  45 30 15    

  30 2 15    

 

  Working backwards: 
 

  15 45 1 30     

   15 45 75 1 45     

  15 2 45 75     

   15 2 270 3 75 75       

  15 2 270 7 75      

 
  Now multiplying through by 27: 

 

   405 270 54 75 189      

     405 270 5 10 4 75 10 18 9          

         405 270 4 1350 10 1350 10 75 9          

     405 270 4 75 9      

 

 Therefore you should place the fish and 9 75g  weights together and 4 270g  weights on the 

other side. 

 

7 a We have  moda b n hence there is an integer q such that a qn b  so 

  a c qn b c    hence  moda c b c n    

 

 b We have  moda b n and  modc d n so there are integers p and q such that 

  a qn b  and c pn d  so 

  

  

 

2

ac qn b pn d

qpn qnd bpn bd

n qpn qd bp bd

  

   

   

 

  Hence  modac bd n  as required 

 

 c We have  moda b n and we wish to prove that  2 2 mod .a ac b bc n    

  By part a we know  mod .a c b c n    

  Applying part b then gives 

       moda a c b b c n    

   2 2 moda ac b bc n    
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8 We have 400 20025 11N   and wish to compute  mod3 .N  

 We consider each term in the sum separately. 

 First note that  25 mod3 1,  hence  400 40025 mod 3 1 1   

 Also  11 mod3 2,  so    211 mod3 4 mod 3 1.    

 Therefore we have  200 20011 mod3 1 1.   

 Hence  2 mod 3N   

 

9 We wish to prove that  5 1 22 5 mod 27 0n n     

 We proceed by induction. 

 In the 0n  case one has  22 5 27 0 mod 27   so the base case is true. 

 For the induction step assume the claim is true for n  

 For 1n  one has 

 

   
 

 
   

5 1 1 3

5 6 3

5 5 1 2

5 1 5 1

2 5 mod 27

2 5 mod 27

2 2 5 5

32 2 5 2 mod 27

27 mod 27 0 mod 27

n n

n n

n n

n n

  

 

 

 



 

   

   

 

 

 

10 We wish to compute  9993 mod 7 .  

 We start by computing some small powers: 

 

 
 
 
 
 
 

1

2

3

4

5

6

3 3 mod 7

3 2 mod 7

3 6 mod 7

3 4 mod 7

3 5 mod 7

3 1 mod 7













 

 After this the pattern repeats itself. 

 So  999 166 6 33 3 6 mod 7     

 Therefore the remainder is 6   

 

11 We write N pqrs where the digits satisfy  0 mod11 .p q r s      

 So    3 2mod11 10 10 10 mod11N p q r s     

 Now using properties of modular arithmetic we have 

 

 
   
   

10 mod11

100 9 11 1 mod11

1000 91 11 1 mod11

r r

q q

p p p

 

  

    

 

 Hence      mod11 mod11 0 mod11N p q r s       

 
12 The sum of the digits of 3 848 517 is 36 which is clearly divisible by 9, hence by the test 

 3 848 517 is also divisible by 9. 
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13 A number has digits 6a193b8. Since we are told the number is divisible by 11, we have that 

  6 1 9 3 8 0 mod  11 .a b        

 Which simplifies to 

  9 0 mod  11a b    

 Since it is divisible by 4, we have that the number with digits 8b is divisible by 4. 

 This limits the choice of possible b to just 0, 2, 4, 6, 8. 

 Now using the relation  9 mod  11 ,a b   the following pairs of  ,a b  are possible: 

   

 

   
   
   
   
   

, 9,0

, 7, 2

, 5, 4

, 3,6

, 1,8

a b

a b

a b

a b

a b











 

 

14 We wish to solve  75 2 mod8 .x   

 Firstly,    9 8 3 2 mod8 .x    

 So the equation reduces to  3 2 mod8 .x   

 Now since  gcd 3,8 1,  3 has a multiplicative inverse modulo 8, which is 3.  

 Multiplying through by 3 gives 

    9 6 mod8 6 mod8x x    

 Hence the solution is given by  6mod 8 .x   

 

15 a Suppose there was a solution to  40 1 mod12 .x    

  Then there would exist a q such that 40 12 1.x q   

  However, the left-hand side of the above equation is even, whereas the right hand side is odd. 

  This is a contradiction, therefore there are no solutions. 
 

 b We wish to solve  40 1 mod  11 .x   

  Since gcd(4,11) 1,  4 has a multiplicative inverse mod 11 which is 3. 

  Multiplying through by 3  gives 

     120 3 mod  11 10 3 mod  11x x    

  Hence the equation reduces to  10 3 mod  11 .x   

  Similarly, since gcd(10,11) 1,  10 has a multiplicative inverse mod 11 which is 10. 

     100 30 mod  11 30 mod  11x x    

  Hence the equation reduces to 

     30 mod  11 8 mod  11x    

 

16 a By inspection, the congruence equations are 

  
 
 

0 mod18

2 mod14

n

n




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16 b We wish to solve these for n. 

   0 mod18n  gives the possible values. 

  18,36,54,72,90,108,126,144,162,180,198  

  The condition  2 mod14n  gives the possible values. 

  2,16,30, 44,58,72,86,100,114,128,142,156,170,184,198  

  Hence the two solutions are 72 and 198. 

 
17 a Fermat’s Little Theorem states that p is a prime number and a is any integer, then  

   modpa a p  or  1 1 modpa p   

  

 b We wish to compute  20 30 40 50 602 3 4 5 6 mod7     

  We have by Fermat: 

   6 6 6 6 62 3 4 5 6 1 mod 7       

  Therefore 
20 30 40 50 602 3 4 5 6     

  2 0 4 2 02 3 4 5 6       

  84 1 2 25 1      

   14 0 mod 7    

  as required 
 

18 We wish to solve  86 4 mod 7 .x   

 By Fermat’s Little Theorem,  6 1 mod7 .x   

 Therefore,    86 80 2mod 7 ... mod 7 .x x x    

 Hence we need to solve  2 4 mod 7 ,x   hence  2 mod 7x   or  5 mod 7 .x   

 

19 a The residue representing the encoding of A is given by  7 mod 26 ,  hence A gets encoded to G. 

  The residue representing the encoding of B is given by  14 mod 26 ,  hence B gets encoded 

  to N. Hence ABBA gets encoded to GNNG. 
 

 b We wish to use Bezout’s identity to find a multiplicative inverse of 7 mod 26. 
  Applying the Euclidean algorithm: 

  

26 3 7 5

7 5 2

5 2 2 1

2 2 1

  

 

  

 

 

   

  Working backwards gives 
   

   
 

1 5 2 2

5 2 7 5 3 5 2 7

3 26 3 7 2 7 3 26 11 7

  

       

         

 

  Hence the multiplicative inverse of 7 is  11 15 mod 26 .   
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19 c We wish to decode HIT. 

  The residue representing the decoding of H is equal to 

   15 8 mod 26 16.   Hence H is decoded to P. 

  The residue representing the decoding of I is equal to 

   15 9 mod 26 5.   Hence I is decoded to E. 

  The residue representing the decoding of T is equal to 

   15 20 mod 26 14.   Hence T is decoded to N. 

  Hence HIT is decoded to PEN. 

 

 d Since 6 and 26 are not coprime, 6 does not have a multiplicative inverse mod 26.  

  Therefore the encoding is not reversible, as multiple letters may be encoded to the same letter. 

 

20 Given that there are 7 people who must sit downstairs and 6 people who must sit upstairs, the 

problem reduces to finding the number of ways to distribute the remaining 20 people among the 

remaining 11 free downstairs slots and 9 free upstairs slots. 

 Once we have determined how many are sitting upstairs, this determines who is seated downstairs. 

 Therefore the number of combinations is 
20

167960.
9

 
 

 
 

 

21 For n to be divisible by 9, the digits must add up to a multiple of 9. 

 The digits 0 through 9 add up to a multiple of 9, so if you omit two of them, those two must also add 

up to 9. So if you omit 0, then you must also omit 9 etc. 

 This means that there are only five possible pairs of numbers that you can omit. 

 

 If you omit 0 and 9, then the remaining 8 digits can be arranged in any order, giving 8! possibilities. 

 In each of the other cases, you cannot place 0 in the first position, thus giving 7(7!) possible ways of 

ordering the numbers. 

 So, of the five pairs of possible omissions, you have one choice that leads to 8! numbers, and four 

choices that each lead to 7(7!) numbers.  

 

 Summing these gives        8! 4 7 7! 8 7! 28 7! 36 7! .       

 

 Therefore a = 36. 

 

22 a We can view each subset of  1,2,3,4,5,6,7S  as a way of assigning to each element a 1 or 0 

  depending on whether the element is in the subset or not respectively. 

  Since we have 2 choices for each element, the number of assignments and hence subsets is 

  72 128.  

 

 b We are choosing 4 elements from 7 to be in the subset. 

  Therefore, the number of ways we can do this is 
7

35.
4

 
 

 
 

  Therefore there are 35  subsets. 

 

 c i If we can repeat digits, then there are 7 choices for each digit hence 47 2401 possible 

numbers. 

 

  ii If we cannot repeat digits, then there are 7 6 5 4 840     choices. 
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23 a i Closure is satisfied since all entries in the Cayley table are members of S.  

  ii By inspecting the row/column associated to s, we can see that s acts as the identity. 

 

 b The flaw in the argument is that for an element y to be the inverse of the element x, not only do we 

require that ,x y e   but we also require .y x e   By inspecting the table, one can see this is not 

the case for all elements; for example, p t s  but .t p r   

 

 c The axiom for associativity is not satisfied. For example: 

  
 

 
p p t p s p

p p t q t r

    

    
 

 

24 a We show that M forms a group. 

  We are allowed to assume associativity, so we just need to prove closure, identity and inverse. 

   

  Closure follows from properties of modular arithmetic. 

  In particular for ,x y M x y is the residue when x y is divided by 6. 

  By the division algorithm, this is always an integer in M.  

 

  Identity exists since  0 mod 6 .x x   Hence 0 is the identity element. 

  Inverse follows since    6 0 mod6x x   for any x, hence 6 x is the inverse of x.  

 

 b 1 has order 6, 2 has order 3, 3 has order 2, 4 has order 3 and 5 has order 6 

 

 c The order of any subgroup must divide the order of the group. Hence M cannot have a subgroup 

  of order 4, as 4 does not divide 6. 

 

25 Suppose G is a group and , ,a b c G with .a c b c    We will show that .a b  

 Since G  is a group, we may multiply on the right by 1.c
  

 This gives    1 1.a c c b c c       

 Then by associativity: 

    1 1a c c b c c       

 By the definition of inverse: 

 a e b e    

 Therefore .a b  

 

26 Firstly, note that the order of the group is 3. Let the element corresponding to a rotation by 120�  be x. 

Then 2
x is a rotation by 240� and 3

x is a rotation by 360�which is the identity, hence x  has order 3. 

Hence the group is cyclic, generated by x. 
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27 a Let G be the set of integers that are less than 8 and relatively prime to 8, i.e.  1,3,5,7 .   

  We claim these form a group under multiplication modulo 8. 

  One can compute a Cayley table giving 

  

1 3 5 7

1 1 3 5 7

3 3 1 7 5

5 5 7 1 3

7 7 5 3 1

 

 

  Closure: All elements in the table are members of G.  

  Identity: The row and column corresponding to 1 are the same as the column and row headings, 

  so 1 is the identity. 

  Associativity:    8 8 8 8 8 8a b c a b c a b c          

  Therefore  8,G   is a group. 

 

 b If the group were cyclic there would be an element of order 4. 

  However, inspecting the table above, we can see that every element has order 2. 

  Hence the group cannot be cyclic. 

 

28 By the division theorem, k mq r   for some ,q rℤ  such that   0 .r m�   

 So  q
k mq r m rb a a a a     

 So   q
r m ka a a


   

 Now , ,m ka a H  so r
a H   

 Since m
a  is the smallest power of a in H, and ,r m  we have that 0.r    

 Therefore k mq  and every element of H is of the form   .
q

ma   

 Therefore H has generating element ,ma  so is cyclic. 

 
29 a There are 4 elements in the group, so the order is 4. 

 

 b  ,H e a cannot be a subgroup since 2 ,a b H   similarly  ,H e c cannot be a subgroup 

  since 2 .c b H   

 

 c Let  , .S e b  We claim that this is a subgroup. 

  Associativity follows from the associativity of the group operation on G.  
  From considering the Cayley table, every element is in S, so S is closed. 

  

e b

e e b

b b e

 

  From the table we also see that the identity is in S.  

  Also, every element has an inverse since 1e e   and 1 .b b   

 
30 a The order of any element must be 1 or p. 

  So any element a e  has order p and is a generator for C. 

  Therefore C is cyclic. 
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30 b By Lagrange’s theorem, the order of any subgroup of C has to divide p.  

  Therefore, the order of any subgroup is either 1 or p, so the only subgroups of C are itself and  .e   

  Therefore C has no non-trivial proper subgroups. 

 

31 Let H  be the subgroup generated by a, then the order of H is the smallest positive k such that 

 
ka e , on the other hand By Lagrange’s theorem k must divide n so there is an integer q such  

 that n qk and then we have  q
n qk k q

a a a e e     as required. 

 

32 By Bezout’s identity we can find integers x, y such that 1.mx ny    

 So      m y m
mx ny x n xa a a a a    since .na e   

 So there exists xb a  such that .mb a   

 To prove uniqueness, assume there is another element c G  such that .mc a   

 Then    1 1
y y

m m mx mx my my n nb c b c b c b b c c
           

 But ,n nb c e   so .b c   

 

33 a 4S has order 4! 4 3 2 1 24,      since for any permutation there are 4 choices on where to send 

1, 3 choices on where to send 2, 2 choices on where to send 3 and then just 1 choice on where to 

send 4. 
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33 b We compute the Cayley table of 4 :V  

 Clearly 1v is the identity, so the products we need to compute are: 

 

2 3 4

3 2 4

1 2 3 4 1 2 3 4 1 2 3 4

2 1 4 3 3 4 1 2 4 3 2 1

1 2 3 4 1 2 3 4 1 2 3 4

3 4 1 2 2 1 4 3 4 3 2 1

v v v

v v v

    
      
    

    
      
    

�

�

 

 

2 4 3

4 2 3

1 2 3 4 1 2 3 4 1 2 3 4

2 1 4 3 4 3 2 1 3 4 1 2

1 2 3 4 1 2 3 4 1 2 3 4

4 3 2 1 2 1 4 3 3 4 1 2

v v v

v v v

    
      
    

    
      
    

�

�

 

 

3 4 2

4 3 2

1 2 3 4 1 2 3 4 1 2 3 4

3 4 1 2 4 3 2 1 2 1 4 3

1 2 3 4 1 2 3 4 1 2 3 4

4 3 2 1 3 4 1 2 2 1 4 3

v v v

v v v

    
      
    

    
      
    

�

�

 

  

2 2 1

3 3 1

4 4 1

1 2 3 4 1 2 3 4 1 2 3 4

2 1 4 3 2 1 4 3 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4

3 4 1 2 3 4 1 2 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4

4 3 2 1 4 3 2 1 1 2 3 4

v v v

v v v

v v v

    
      
    

     
       
     

    
      
    

�

�

�

 

 

  So the Cayley table is 
 

  

1 2 3 4

1 1 2 3 4

2 2 1 4 3

3 3 4 1 2

4 4 3 2 1

v v v v

v v v v v

v v v v v

v v v v v

v v v v v

 

 

  The table clearly shows the subgroup is closed, has an identity and every element has an inverse.  

  Hence it is a subgroup. 
 

 c 4V  is isomorphic to the Klein 4-group 4.K   
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34 a We compute the orders of the various elements. 
  Since the order of the group is 8, the possible orders are 1,2,4,8 and 1 has order 1. 

  

  Now  27 19 mod 30 so    37 7 19 mod30 13 mod30   so    47 7 13 mod30 1 mod30   so 

  7 has order 4. 

   

  Now    211 121 mod30 1 mod30  so 11 has order 2. 

 

  Now    213 169 mod 30 19 mod30   so    313 13 19 mod30 7 mod30    

  so    413 13 7 mod30 1 mod30   so 13 has order 4  

 

  Now  217 19 mod30 so    317 17 19 mod30 23 mod30   so  

     417 17 23 mod 30 1 mod30   so 17 has order 4 

   

  Now    219 361 mod 30 1 mod30  so 19 has order 2 

 

  Now    223 529 mod30 19 mod 30  so    4 223 19 mod30 1 mod30  so 23 has order 4 

  

  Finally    229 841 mod30 1 mod30  so 29 has order 2 

 
 b To find a cyclic subgroup of order 4, we can simply take the cyclic subgroup generated by an 

element of order 4. For example, taking 7 as the generator gives  1,7,13,19 .H   

 

 c One may verify by computing the products that  1,19,29,11H  is a subgroup, and since it 

contains no elements of order 4, it must be isomorphic to the Klein 4-group. 

 
 d H has element 1 with order 8, whereas G contains no elements of order 8. 

  Therefore G is not isomorphic to H.  
 

35 a The elements of G are  2 4 6 8
5 5 5 51, , , ,

i i i i

G e e e e
   

 and hence G has order 5. 

 b  

   
 

 c 
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36 a Firstly, we find matrices for the rotations by multiples of 90 .�  

  Since these are all generated by a single rotation by 90 ,�  it suffices to find the matrix for this. 

  The other matrices are then just powers of this matrix. 
 

  A clockwise rotation by 90� is represented by the matrix 
0 1

1 0
a

 
   

 

  So the other rotations are: 
 

  2
0 1 0 1 1 0

1 0 1 0 0 1
a

    
           

 

  3
0 1 1 0 0 1

1 0 0 1 1 0
a

     
          

 

 

  The identity symmetry has matrix 
1 0

0 1
e

 
  
 

 

  The other four symmetries come from reflections in the horizontal/vertical and two diagonal axes. 
 

  A reflection in the x-axis is represented by the matrix 1

1 0

0 1
r

 
   

 

  A reflection in the y-axis is represented by the matrix 2

1 0

0 1
r

 
  
 

 

  A reflection in the ‘North-East’ diagonal axis is represented by the matrix 3

0 1

1 0
r

 
  
 

 

  A reflection in the ‘South-East’ diagonal axis is represented by the matrix 4

0 1

1 0
r

 
   

 

 
 b We compute the Cayley table: 

 

  

1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8

2 2 3 4 1 6 7 8 5

3 3 4 1 2 7 8 5 6

4 4 3 1 2 8 5 6 7

5 5 8 7 6 1 4 3 2

6 6 5 8 7 2 1 4 3

7 7 6 5 8 3 2 1 4

8 8 7 6 5 4 3 2 1

g g g g g g g g

g g g g g g g g g

g g g g g g g g g

g g g g g g g g g

g g g g g g g g g

g g g g g g g g g

g g g g g g g g g

g g g g g g g g g

g g g g g g g g g

 

 

  Closure: All entries in the Cayley table are in H.  

  Identity: The row and column corresponding to 1g  are the same as the row and column headings, 

  so 1g  is the identity. 

  Inverse: 1

2 4 ;g g   all other elements are self-inverse. 

  Associativity assumed 
  Therefore H forms a group under � .  
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36 c The groups are isomorphic, since by viewing the square from part a as living in the complex plane 

we may identify clockwise rotation by 90�with multiplication by .i  

  This identifies all the rotation matrices with 2 3 4, , ,g g g  so it remains to identify the reflections. 

  Reflection in the x-axis can be represented by the function 
5
( )g z z  

  Reflection in the y-axis can be represented by the function 
7
( )g z z   

 
  Reflection in the ‘North East’ diagonal axis can be represented by the function 

  
6
( )g z iz   

  Reflection in the ‘South-East’ diagonal axis can be represented by the function 

  
8
( )g z iz   

  Hence this map between the two groups is an isomorphism. 
 

37 a The locus forms a major arc since 
π π

4 2
    

 

 b Let iz x y   

  Then 
 
 

     
   

2 2

2 22 2

i 1 i 1i 1i 1 2i

i i 1 1 1

x y x yx yz x y x

z x y x y x y

       
  

      
 

  
   

2 2

2 22 2

1 2
i

1 1

x y x

x y x y

  
   

     
 

  Now 
i π

arg
i 4

z

z

    
, so 

i π
tan arg tan 1

i 4

z

z

         
 

  Therefore 
 

 

22

2 2

22

2

1
1

1

1

x

x y

x y

x y

 


 

 

 

  
   

2 2

2 22 2

2 1

1 1

x x y

x y x y

 


   
 

  2 2 1 2x y x    

  2 22 1 0x x y     

   2 21 1 1 0x y      

   2 21 2x y    

  Hence the centre is at (1, 0)  

 

38 a A is represented by the complex number 1 3i.   
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38 b The radius of the circle is given by   1 2i 1 3i 5i 5XA         
����

 

  So the area of the sector is    21 25π

2 12
r    

  Substituting 5r   gives   
25 25π

2 12


  

  Therefore 
π

6
   

  Now 
π π 5 5 3

5sin 5cos i i
6 6 2 2

XB      
����

  

  Therefore 
5 5 3

1 2i i
2 2

b OB     
����

  

  
7 5 3 4

i
2 2


    

 

39 Let iz x y   

 1 2 iz z    

    1 i 2 1 ix y x y      

 Squaring the modulus gives 

   22
1 i 2 1 ix y x y      

     2 22 21 2 1x y x y      

 2 2 2 22 1 2 2 4 2x x y x y y        

 2 22 4 1 0x x y y      

    2 2
1 1 2 4 1 0x y        

    2 2
1 2 4x y     

 Hence the circle has radius 2 and centre  1,2  

 

40 a  
2i π

arg arg( 2i) arg( 2) .
2 2

z
z z

z


    



 
 
 

 

The angles which the vectors make with the positive 

x-axis differ by a right angle. As drawn here, the 

difference is 
π π

π .
2 2

   The locus of the points, 

where the difference is a right angle, is a semi-circle, 

with the line joining –2 on the real axis to 2 on the 

imaginary axis as diameter. 

It is a common error to complete the circle. The 

lower right hand completion of the circle has 

equation 
2i π

arg .
2 2

z

z


 



 
 
 
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40 b 

 

  The diameter of the circle is given by 
2 2 22 2 8d    , so 2 2d    

  Therefore 
2 2

| 1 i | 2
2

z      

 

41 a Both loci L and M are circles, hence they are similar  
  

The dotted line represents the complex number 

1 i ( 1 i).z z       The length of this vector is 

the radius of the circle. 
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41 b Computing the scale factor of enlargement amounts to computing the radii of both circles. 
 

  For L we have: 
   

  4 5 2iz z    

     4 i 5 2 ix y x y      

     2 2

4 i 5 2 ix y x y      

      2 22 24 5 2x y x y      

  2 2 2 28 16 5 5 20 20x x y x y y        

  2 24 8 4 20 4 0x x y y      

  2 22 5 1 0x x y y      

   
2

2 5 25
1 1 1 0

2 4
x y

        
 

 

  Which simplifies to 

   
2

2 5 25
1

2 4
x y

     
 

 

  Hence the radius of L is 
5

2
 

 
  For M we have: 

  6 7 6iz z    

     6 i 7 i 6x y x y      

     2 2

6 i 7 6 ix y x y      

     2 22 26 7 7 6x y x y      

  2 2 2 212 36 7 7 84 252x x y x y y        

  2 26 12 6 84 216 0x x y y      

  2 22 14 36 0x x y y      

     2 2
1 1 7 49 36 0x y        

     2 2
1 7 14x y     

  Hence this circle has radius 14  

  So the scale factor of enlargement is
5
2

14 2 14

5
  
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42 The locus is given by 

 
1 π

arg
4

z

z

   
 

 

 Substituting iz x y    

 
  
  

2 2

2 2

1 i i1 1 i i i i

i i i

x y x yz x y x x xy xy y y

z x y x y x y x y

         
  

   
 

 
2 2 2 2

2 2 2 2 2 2

i
i

x x y y x x y y

x y x y x y

     
  

  
 

 Now 
1 π

arg
4

z

z

   
 

, so 
1 π

tan arg tan 1
4

z

z

       
  

 

 So 
2 2

2 2

2 2

1

y

x y

x x y

x y





 


 

 2 2y x x y     

 2 2 0x x y y     

 

2 2
1 1 1 1

0
2 4 2 4

x y
           
   

 

 

2 2
1 1 1

2 2 2
x y
         
   

 

 So the centre of the circle is 
1 1

,
2 2

   
 

 and the radius is 
1

2
 

 Therefore, this is the major arc of a circle. 

The length of the curve required is  2π ,r   where   is the angle between the lines connecting the 

endpoints of the arc to the centre of the circle. 

 Geometrically we can see that 
1
2

1
2

tan 1
2


  , so 

π

2
   

 Therefore the length of the arc is 
1 π 1 3π 3π

2π
2 22 2 2 2

        
   
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43 We consider the locus i 1z p z    

 Squaring gives 
2 2

i 1z p z    

 Substituting i :z x y   

    2 2

1 i 1 ix y p x y      

     2 22 21 1x y p x y      

 2 2 2 22 1 2x y y px px p py        

    2 21 2 2 1 1 0p x px y p y p         

 
2 22 2

1 0
1 1

px y
x y

p p
    

 
  

 
   

2 22

2 2

1 1
1 0

1 11 1

p p
x y

p pp p

   
              

  

 
   

2 2 2

2 2

1 1
1

1 1 1 1

p p
x y

p p p p

   
              

 

 
 

 

2 2 22

2

1 11

1 1 1

p pp
x y

p p p

     
           

 

 
 

2 2

2

1 2

1 1 1

p p
x y

p p p

   
           

 

 Hence the radius is 
2

1

p

p 
 

 

 For a circumference of 24π the radius is 12 

 Hence 
2

12
1

p

p



 

  2
2 12 12p p    

    

44   
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45 a The locus is given by the inequalities   6i 2 3z z �  and   Re( )z k�  

  Taking the first inequality: 

    

2 2
6i 4 3z z �  

      

2 2
6 i 4 3 ix y x y   �  

        

2 22 26 4 3x y x y   �  

    
2 2 2 212 36 4 24 36 4x y y x x y     �  

    
2 20 3 24 3 12x x y y  �  

    
2 20 8 4x x y y  �  

    
2 28 4 0x x y y   �  

        

2 2
4 16 2 4 0x y     �  

        

2 2
4 2 20x y   �  

  Hence the circle has centre  4, 2  

  Hence, for a semi-circle, we should take 4k   

 

 b The area of the semicircle is 
2π π 20

10π
2 2

r 
   

 

46 The line corresponding to z p z q    is given by the perpendicular bisector of p and q, 

 that is
2

p q
x


   

 The area of the triangular region is therefore 

2
1

2 2

q p
x

   
 

 

 So  2
8q p x   

 8q p x   

 So 8 ,q p x   as required 

 

47 a The transformation defined by 3 4 2iw z   represents a scaling by 3, followed by a translation 

  by the complex number 4 2i.  

  The translation leaves the area of the triangle invariant. 

  Therefore the new area is 23 8 72.    

 

 b We consider what happens to the line Im( ) 4z   under the transformation. 

  Consider a point 4iz x   on the line. 

  This is mapped to  3 4i 4 2i 3 4 10i.w x x        

  Hence the line is mapped to the line Im( ) 10.z   
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48 
2 1

2 2 1
2

2 2 1 ( 2) 2 1

2 1

2

2 1
| | 1 1

2

| 2 1| | 2 |

z
w wz w z

z

wz z w z w w

w
z

w

w
z

w

w w


    


      







  


  

 

 Let iw u v   

 

2 2

2 2 2 2

2 2 2 2

2 2 2 2

| 2( i ) 1| | i 2 |

| (2 1) i2 | | ( 2) i |

| (2 1) i2 | | ( 2) i |

(2 1) 4 ( 2)

4 4 1 4 4 4

3 3 3 1

u v u v

u v u v

u v u v

u v u v

u u v u u v

u v u v

    

    

    

    

      

    
 

 

This is a circle centre O, radius 1 and has the equation  

| | 1w   in the Argand plane. 

Hence, the circle | | 1z   is mapped onto the circle  

| | 1w  , as required. 

  

You know that | | 1z   and you are trying to find 

out about w. So it is a good idea to change the 

subject of the formula to z. You can then put the 

modulus of the right hand side of the new 

formula, which contains w, equal to 1. 

It is not easy to interpret this locus geometrically 

and so it is sensible to transform the problem into 

algebra, using the rule that if i ,z x y  then 

2 2 2
| | .z x y   
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49 a 
1

i
2

i

i i

i

1

z x

z
w

z

zw z z wz

z
w

 




    




 

  

Let i

1 i
i

2 1 i

w u v

x
u v

 

 
 

 

  Multiplying the numerator and denominator  

  
2 2

2 2 2 2

by 1 i

1 i(1 i )
i ,

2 (1 )

1
i

(1 ) (1 )

u v

u v
x

u v

v u

u v u v

 

 
 

 

 
 

   

 

 

  Equating imaginary parts 

  

2 2

2 2

2 2

1 1

2 2 1

2 1 2 2

1

u

u u v

u u v u

u v




  

    

 

 

  2 2 1u v   is a circle centre O, radius 1. 

  Hence the line, Im 
1

2
z   is mapped onto the  

 circle with equation | | 1.w   

  

The real part of a complex number on Im 
1

2
z   can 

have any real value, which you can represent by the 

symbol x, but the imaginary part must be 
1

.
2

 

Multiply the numerator and the 

denominator of the right hand side 

by the conjugate complex of 

1 iu v   which is 1 i .u v   

You are aiming at | | 1.w   If i ,w u v   

this is the equivalent to 
2 2

1.u v  So that 

is the expression you are looking for. 
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49 b The transformation 
i

'
z

w
z


  maps the line Im 

1

2
z    

 onto the circle with centre O and radius 1. 

  The transformation " 2 'w w  maps the circle with centre 

 O and radius 1 onto the circle with centre O and radius 2. 

 The transformation 3 iw w"    maps the circle  

with centre O and radius 2 onto the circle with  

centre 3 i  and radius 2. 

 
  Combining the transformations 

  

i
2 3 i

2 2i 3 i

(5 i) 2i

z
w

z

z z z

z

z

z

    
 
  



 


 

 

50 a If i ,z x y   then 
π

arg 1
4

y
z

x
    

  Let x y    

  

 

 

1
2 2 2

1

2 2 2

i 1 ( 1) i

i i ( 1)i

( 1) i( 1) i
| |

( 1)i ( 1)i

( 1)
1

( 1)

w

w

   
   

  
   

 

 

   
 

   

  
 

   

 
 

 

 

 

  Hence the points on 
π

arg
4

z   map, under T, 

 onto points on the circle | | 1.w   

  

The first transformation is the 

transformation in part a. 

The transformation z kz֏  

increases the radius of the 

circle by a factor of k. This 

transformation is an 

enlargement, factor k, centre of 

enlargement O. 

The transformation z z a֏  

maps a circle centre O to a circle 

centre a. This transformation is a 

translation. 

For all complex numbers 

a and b,
| |

| |

a a

b b
  

As 0,   the image would only be part of 

this circle but the wording of the question 

does not require you to be more specific. You 

are only required to show that the image 

points are points on the circle; not all of the 

points on the circle. (The image is, in fact, 

just the lower right quadrant of the circle.) 
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50 b i 1

1 i

1 i

1

|1 i |
| | 1

| 1|

wz w z

wz z w

w
z

w

w
z

w

  

  







 


 

  Hence |1 i | | 1|w w    

  |1 i | | i( 1) | | i || i | 1 | i | | i |w w w w w             

  The image of | | 1z   in the z-plane is  

   | i | | 1|w w    

  in the w-plane. 

  Writing iw u v  : 

  | i i | | i 1|u v u v      

     | 1 i | | 1 i |u v u v      

     2 2| 1 i | | 1 i |u v u v      

     2 22 21 1u v u v       

  2 2 2 22 1 2 1u v v u u v         

  So v u    

 

 c, d  

  

This is the image under T of | | 1z   but it is 

difficult to interpret and part c would be 

difficult without some further working. 

This is the locus of points equidistant from 

the points in the Argand plane representing 

–i and one. That is the perpendicular 

bisector of (0, 1)  and (1, 0).  

1 i i 1 1 1
i i

2i 2i 2 2
z w

 
        

The perpendicular bisector of (0, 1)  and 

(1,0)  is the line .v u   
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51 a 1 iz a e   

  

 b Let 1 iz a e   then we have 
1 i iw az e ae
z

      

   cos isin cos i sina        

     1 cos 1 isina a      

  iu v    

  Hence  1 cosu a    and  1 sinv a     

  

2 2

1
1 1

u v

a a

           
  

         2 2 2 22 21 1 1 1u a v a a a       

         22 22 2
1 1 1 1u a v a a a         

       22 22 2 2
1 1 1u a v a a      

  as required 

 

 c This ellipse corresponds to the case 3,a   hence the points on the z-plane that are transformed to 

the ellipse are those such that 
1

3
z   
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Challenge 

 

1 We wish to find integers a, b, c such that 91 65 35 1.a b c    

 Firstly note that no two pairs of these numbers are coprime, which will force a, b, c to all be  

non-zero. 

 

 Firstly,  gcd 65,35 5,  so we can find integers p and q such that 65 35 5.p q   

 Since gcd(5,91) 1 , we can find integers s, t such that 5 91 1.s t   

 Carrying out the first application of the Euclidean algorithm gives 

 

 

65 35 30

35 30 5

30 6 5

 

 

 

 

 

 So working in reverse gives 

 

  
5 35 30

5 35 65 35

5 2 35 65

 

  

  

 

 

 Now we carry out the Euclidean algorithm on 5 and 91 giving 1 91 18 5    

 

 Hence  1 91 18 5 91 18 2 35 65 1 91 36 35 18 65               

 

 Therefore we can choose 1,a   18,b   36.c     

 

2 We wish to prove that there are infinitely many primes congruent to 3 mod 4. 

 Suppose this were not true. 

 Then there would only be finitely many prime numbers congruent to 3 mod 4. 

 Call these prime numbers 1 2, ,..., .
n

p p p  

 Now consider the number 1 24 ... 1.
n

N p p p   

 This is clearly congruent to 3 mod 4, and by construction is not divisible by any of the .
k

p  

 Hence all the prime factors of N must be congruent to 1 mod 4 (since are not even) and 

 N is a product of all its prime factors. 

 However, the product of a sequence of numbers congruent to 1 mod 4 is itself congruent to 1 mod 4. 

 Hence N must be congruent to N mod 4. 

 This is a contradiction, meaning that our initial assumption is false. 

 Therefore there must be infinitely many primes congruent to 3 modulo 4. 

 

3 a Suppose every element of G has order 2 or less and let , .a b G  

  Then     2
e ab ab ab    

  Therefore    ba ab ab ba   

  2abab a   

  2aba  since 2b e   

  ab  since 2a e   

  Hence G is abelian. 
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Challenge 

 

3 b We can simply compute the Cayley table giving: 

 

  

e a b ab

e e a b ab

a a e ab b

b b ab e a

ab ab b a e

 

 

  Note that every element has order 2 so is self-inverse and the group operation is closed.  

  Hence it is a subgroup. 

 

 c Let G be a non-cyclic subgroup of order 2p with p an odd prime. 

  Suppose there is no element of order p. 

  The only factors of 2 p  are 1,2,  and 2p p   

  Therefore every element has order 2. 

  Hence G is abelian and since   2 3 6,G  �  there must exist distinct elements , , .e a b G  

  By part b we have that  , , ,H e a b ab is a subgroup of G, but the order of H is 4 which does 

  not divide 2p, the order of G. 

  Hence by Lagrange, we have a contradiction. 

  Therefore G must contain an element of order p.  

 


