Geometric and negative binomial distributions 3B

1 a
$$E(X) = \frac{1}{0.2} = 5$$

b
$$Var(X) = \frac{1 - 0.2}{0.2^2} = \frac{0.8}{0.04} = 20$$

2 a The probability of rolling a multiple of 3 is $\frac{1}{3}$

So
$$E(X) = \frac{1}{\frac{1}{3}} = 3$$

b
$$\operatorname{Var}(X) = \frac{1 - \frac{1}{3}}{\left(\frac{1}{3}\right)^2} = \frac{2 \times 9}{3} = 6$$

3 Let X denote the number of attempts required to pass the driving test.

a
$$P(X = 3) = 0.65(0.35)^2 = 0.0796$$
 (4 d.p.)

b
$$P(X \ge 4) = 0.35^3 = 0.0429 \text{ (4 d.p.)}$$

c i
$$E(X) = \frac{1}{0.65} = \frac{20}{13} = 1.5385 \text{ (4 d.p.)}$$

ii
$$Var(X) = \frac{1 - 0.65}{0.65^2} = \frac{7}{20} \times \frac{400}{169} = \frac{140}{169} = 0.8284 \text{ (4 d.p.)}$$

4 **a** $\mu = \frac{1}{p} \Rightarrow p = \frac{1}{\mu} \quad (\mu \neq 0)$, so in this case $p = \frac{1}{4}$

b
$$\operatorname{Var}(X) = \frac{1 - \frac{1}{4}}{\left(\frac{1}{4}\right)^2} = \frac{3}{4} \times 16 = 12$$

5 a $Var(X) = 20 \Rightarrow \frac{1-p}{p^2} = 20$

$$20p^2 + p - 1 = 0$$

$$p = (5p - 1)(4p + 1)$$

$$p = \frac{-1 \pm \sqrt{1^2 - 4(20)(-1)}}{2(20)} = \frac{-1 \pm \sqrt{81}}{40} = \frac{-1 \pm 9}{40}$$

$$\Rightarrow p = \frac{1}{5} = 0.2 \quad (as \ p > 0)$$

b
$$E(X) = \frac{1}{0.2} = 5$$

- Rearranging
- Solve by factorising
- Or solve by using the quadratic equation

6 a Let X denote the number of houses visited before receiving a donation.

$$Var(X) = 380 \Rightarrow \frac{1-p}{p^2} = 380$$

$$380 p^2 + p - 1 = 0$$
Rearranging
$$p = (20p - 1)(19p + 1)$$
Solve by factorising
$$-1 + \sqrt{1^2 - 4(380)(-1)} = -1 + \sqrt{1521} = -1 + 39$$

$$p = \frac{-1 \pm \sqrt{1^2 - 4(380)(-1)}}{2(380)} = \frac{-1 \pm \sqrt{1521}}{760} = \frac{-1 \pm 39}{760}$$

$$\Rightarrow p = \frac{1}{20} = 0.05 \quad (\text{as } p > 0)$$
b $E(X) = \frac{1}{0.05} = 20$

7 a Geometric, $X \sim \text{Geo}(p)$

b The probability of parking in the particular space is constant, i.e. the same on each attempt; and that each attempt is independent of any other.

c
$$P(X=2) = p(1-p) = 0.16$$

$$p^{2} - p + 0.16 = 0$$

$$p = \frac{1 \pm \sqrt{(-1)^{2} - 4(0.16)}}{2} = \frac{1 \pm \sqrt{0.36}}{2} = \frac{1 \pm 0.6}{2}$$

Solve by using the quadratic equation

$$\Rightarrow p = 0.2 \text{ or } 0.8$$

As
$$p < 0.5$$
, solution is $p = 0.2$

d
$$E(X) = \frac{1}{0.2} = 5$$

e Var(X) =
$$\frac{1-0.2}{0.2^2} = \frac{0.8}{0.04} = 20$$

8 Let *X* denote the number of attempts required to pull out a blue marble.

a i
$$E(X) = \frac{1}{0.15} = \frac{20}{3} = 6.67 \text{ (2 d.p.)}$$

ii
$$Var(X) = \frac{1 - 0.15}{0.15^2} = \frac{17 \times 400}{20 \times 9} = \frac{340}{9} = 37.78 \text{ (2 d.p.)}$$

b
$$P(X = 4) = 0.15(0.85)^3 = 0.0921 (4 d.p.)$$

c
$$P(X \ge 8) = 0.85^7 = 0.3206 \text{ (4 d.p.)}$$

d
$$P\left(X < \frac{20}{3}\right) = P(X \le 6) = 1 - 0.85^6 = 0.6229 \text{ (4 d.p.)}$$

9 a The probability of the cat catching a fish is constant, i.e. the same on each attempt; and that each attempt is independent of any other.

b Let X denote the number of attempts required to catch a fish.

i
$$P(X = 2) = 0.12(0.88) = 0.1056$$

ii
$$P(X \ge 3) = 0.88^2 = 0.7744$$

9 c
$$E(X) = \frac{1}{0.12} = \frac{100}{12} = \frac{25}{3} = 8.33 \text{ (2 d.p.)}$$

 $Var(X) = \frac{1 - 0.12}{0.12^2} = \frac{0.88 \times 10000}{144} = \frac{8800}{144} = \frac{550}{9} = 61.11 \text{ (2 d.p.)}$

d
$$P(X=3) \times P(X=3) = (0.12 \times 0.88^2)^2 = 0.09293 \times 0.09293 = 0.0086 \text{ (4 d.p.)}$$

e
$$P(X = 2) \times P(X = 3) = (0.12 \times 0.88)(0.12 \times 0.88^2) = 0.1056 \times 0.09293 = 0.0098 \text{ (4 d.p.)}$$

10 a Assuming the faults occur independently and at random, and the long-term average faults per metre is constant, then use a Poisson distribution, $X \sim Po(0.8)$

b
$$P(X > 2) = 1 - P(X \le 2)$$

= 1 - 0.9526 = 0.0474 (4 d.p.)

c Let *Y* denote the number of metre cloths cut before finding one with more than 2 faults. Then from part \mathbf{b} , $Y \sim \text{Geo}(0.0474)$

$$P(Y = 7) = 0.0474(0.9256)^6 = 0.0354$$
 (4 d.p.)

d
$$E(Y) = \frac{1}{0.0474} = 21$$
 (to nearest whole number)

$$Var(Y) = \frac{1 - 0.0474}{0.0474^2} = 424$$
 (to nearest whole number)

e Find the probability of that there are 2 or more faults in a metre of cloth.

$$P(X \ge 2) = 1 - P(X \le 1) = 1 - 0.8088 = 0.1912$$

Let Z denote the number of metre cloths cut before finding one with 2 of more faults. So

$$Z \sim \text{Geo}(0.1912)$$
. A roll is rejected if $Z \leqslant 2$

$$P(Z \le 2) = 1 - (1 - 0.1912)^2 = 0.3458$$

The probability that two consecutive rolls are sent back is:

$$P(Z \le 2) \times P(Z \le 2) = 0.3458^2 = 0.1196 (4 \text{ d.p.})$$