Geometric and negative binomial distributions Mixed exercise 3

1 a Let X denote the number of times required to throw a multiple of 3, $X \sim \text{Geo}\left(\frac{1}{4}\right)$

P(X = 5) =
$$\frac{1}{4} \left(\frac{3}{4}\right)^4 = \frac{81}{1024} = 0.0791$$
 (4 d.p.)
b P(X ≥ 3) = $\left(\frac{3}{4}\right)^2 = \frac{9}{16} = 0.5625$

2 a $X \sim \text{Geo}(0.1)$

b
$$E(X) = \frac{1}{0.1} = 10$$

 $Var(X) = \frac{1 - 0.1}{0.1^2} = \frac{0.9}{0.01} = 90$
c $P(X \ge 12) = 0.9^{11} = 0.3138 \ (4 \text{ d.p.})$

3 a A geometric distribution model, $X \sim \text{Geo}(p)$ where p is the probability of Olivia hitting the target.

b
$$E(X) = \frac{1}{p} = 6 \Rightarrow p = \frac{1}{6}$$

 $P(X = 5) = \frac{1}{6} \left(\frac{5}{6}\right)^4 = \frac{625}{7776} = 0.0804 \ (4 \text{ d.p.})$
c $Var(X) = \frac{1 - \frac{1}{6}}{\left(\frac{1}{6}\right)^2} = \frac{5 \times 36}{6} = 30$

- **d** The model assumes that the throws are independent, and the probability of hitting the target is the same for each throw.
- 4 $X \sim \text{Geo}(0.1)$

If x is the maximum number of times that dice is rolled, then Soujit requires $P(X \le x) < 0.5$ $P(X \le x) = 1 - 0.9^x$ So $1 - 0.9^x < 0.5$ $\Rightarrow 0.9^x > 0.5$ $\Rightarrow x < \frac{\log 0.5}{\log 0.9}$ $\Rightarrow x < 6.579$

- Solution x = 6
- 5 a Let X denote the number of over-ripe avocados found in a box of 24, so $X \sim B(24, 0.02)$ $P(X > 3) = 1 - P(X \le 3)$

=1-0.998766=0.001234 (4 s.f.)

b Let *Y* denote the first time a box is rejected, $Y \sim \text{Geo}(0.001234)$ P(*Y* = 20) = 0.001234(1-0.001234)¹⁹ = 0.0012 (4 d.p.) **6 a** Use the model $X \sim \text{Geo}(0.2)$

 $P(X = 6) = 0.2 \times 0.8^5 = 0.0655 (4 \text{ d.p.})$

- **b** Let *Y* denote the number of games required to win two prizes, so *Y* ~ Negative B(2,0.2) $P(Y=10) = {9 \choose 1} \times (0.2)^2 \times (0.8)^8 = 0.0604 \ (4 \text{ d.p.})$
- c Let Z denote the number of games required to win five prizes, so $Z \sim \text{Negative B}(5, 0.2)$

$$E(Z) = \frac{5}{0.2} = 25$$

Var(Z) = $\frac{5(1-0.2)}{0.2^2} = \frac{4}{0.04} = 100$
 $\sigma = \sqrt{Var(Z)} = \sqrt{100} = 10$

d $X \sim \text{Negative B}(r, p)$

$$E(X) = \frac{r}{p} = 12 \Longrightarrow r = 12p$$
$$Var(X) = \frac{r(1-p)}{p^2} = 16 \Longrightarrow r(1-p) = 16p^2$$

Substituting for r = 12p and dividing by p (as $p \neq 0$) gives

12(1−p) = 16p
⇒
$$p = \frac{12}{28} = \frac{3}{7} = 0.4286 \text{ (4 d.p.)}$$

7 **a** $X \sim \text{Negative B}(4, p)$

$$Var(X) = \frac{4(1-p)}{p^2} = 15 \Longrightarrow 15p^2 + 4p - 4 = 0$$

Factorising gives (5p-2)(3p+2) = 0

As
$$p > 0$$
, solution is $p = \frac{2}{5} = 0.4$
b $P(X = 10) = {9 \choose 3} \times (0.4)^4 \times (0.6)^6 = 0.1003 \ (4 \text{ d.p.})$

- **c** Let *Y* be the number of sixes thrown in 8 rolls of the dice, so $Y \sim B(8, 0.4)$ $P(X > 8) = P(Y \le 3) = 0.5941 (4 \text{ d.p.})$
- 7 **d** As each roll is independent, this requires finding the probability that it takes 8 more rolls of the dice to throw 3 further sixes. If Z is the number of times the dice is rolled until 3 sixes have occurred, then $Z \sim \text{Negative B}(3, 0.4)$ and the required probability is P(Z = 8)

P(Z = 8) =
$$\binom{7}{2} \times (0.4)^3 \times (0.6)^5 = 0.1045 \ (4 \ d.p.)$$

8 a $X \sim \text{Geo}(0.65)$

 $P(X = 2) = 0.65(1 - 0.65) = 0.65 \times 0.35 = 0.2275$

b i Let *Y* be the number of goals Roberta scores in 8 penalties, then $Y \sim B(8, 0.65)$

P(Y = 8) =
$$\binom{8}{5} \times (0.65)^5 \times (0.35)^3 = 0.2786 \ (4 \ d.p.)$$

8 **b** ii Let Z be the number of penalties taken until Roberta scores 5 goals, then $Z \sim \text{Negative B}(5, 0.65)$

P(Z = 8) =
$$\binom{7}{4}$$
 × (0.65)⁵ × (0.35)³ = 0.1741 (4 d.p.)

- iii Let *M* be the number of goals Roberta scores in 9 penalties, then $M \sim B(9, 0.65)$ P($M \le 4$) = 0.1717 (4 d.p.)
- iv As each penalty is independent, this requires finding the probability that Roberta scores 2 more goals in the 5 penalties she takes after her first two successful attempts. If N is the number of goals Roberta scores in 5 penalties, then $N \sim B(5, 0.65)$ and the required probability is P(N = 5)

$$P(N = 5) = {\binom{5}{2}} \times (0.65)^2 \times (0.35)^3 = 0.1811 \ (4 \text{ d.p.})$$

c $D \sim \text{Negative B}(5, 0.65)$

$$E(D) = \frac{5}{0.65} = \frac{100}{13} = 7.69 \ (2 \text{ d.p.})$$
$$Var(D) = \frac{5(1 - 0.65)}{0.65^2} = \frac{1.75}{0.4225} = \frac{17500}{4225} = \frac{700}{169}$$
$$\sigma = \sqrt{Var(Z)} = \sqrt{\frac{700}{169}} = \frac{10\sqrt{7}}{13} = 2.04 \ (2 \text{ d.p.})$$

d This is the probability that Sukie fails to score with her first penalty times the probability that Roberta scores her first penalty:

P(Sukie doesn't score) \times P(Roberta scores) = $(1-0.4) \times 0.65 = 0.39$

e P(Sukie doesn't score) \times P(Roberta doesn't score) \times P(Sukie scores)

$$= (1 - 0.4) \times (1 - 0.65) \times 0.4 = 0.084$$

f The probability that Sukie and Roberta each fail to score from their first three penalties is:

$$(1-0.4)^3 \times (1-0.65)^3 = 0.216 \times 0.042875 = 0.009261$$

Challenge

- 1 a $X \sim \text{Negative B}(2, p)$
 - **b** $Y_1 \sim \text{Geo}(p), Y_2 \sim \text{Geo}(p)$
 - **c** $X = Y_1 + Y_2$
 - **d** The mean of X is the sum of the means of Y_1 and Y_2 so $E(X) = E(Y_1) + E(Y_2) = \frac{1}{2} + \frac{1}{2} = \frac{2}{2}$

$$(X) = E(Y_1) + E(Y_2) = \frac{1}{p} + \frac{1}{p} = \frac{1}{p}$$

2 $X \sim \text{Negative B}(r, p)$

Let $Y_1, ..., Y_r$ be random variables, with $Y_1 \sim \text{Geo}(p), ..., Y_r \sim \text{Geo}(p)$

such that
$$X = Y_1 + \dots + Y_r = \sum_{i=1}^{i=r} Y_i$$

Then $E(X) = \sum_{i=1}^{i=r} E(Y_i) = \sum_{i=1}^{i=r} \frac{1}{p} = r \times \frac{1}{p} = \frac{r}{p}$
Also $Var(X) = \sum_{i=1}^{i=r} Var(Y_i) = \sum_{i=1}^{i=r} \frac{1-p}{p^2} = r \times \frac{1-p}{p^2} = \frac{r(1-p)}{p^2}$