Hypothesis testing 4B

1 a $X \sim Po(\lambda)$

$$H_0: \lambda = 5.5 \quad H_1: \lambda < 5.5$$

Assume H_0 , so that $X \sim Po(5.5)$

Significance level 5%, so require $P(X \le c) < 0.05$

From the tables

$$P(X \le 1) = 0.0266$$
 and $P(X \le 2) = 0.0884$

$$P(X \le 1) < 0.05$$
 and $P(X \le 2) > 0.05$ so the critical value is 1

Hence the critical region is $X \leq 1$

Actual significance level = $P(X \le 1) = 0.0266$

b $X \sim Po(\lambda)$

$$H_0: \lambda = 8$$
 $H_1: \lambda > 8$

Assume H_0 , so that $X \sim Po(8)$

Significance level 1%, so require $P(X \ge c) < 0.01$

From the tables

$$P(X \ge 15) = 1 - P(X \le 14) = 1 - 0.9827 = 0.0173$$

and
$$P(X \ge 16) = 1 - P(X \le 15) = 1 - 0.9918 = 0.0082$$

$$P(X \ge 15) > 0.01$$
 and $P(X \ge 16) < 0.01$ so the critical value is 16

Hence the critical region is $X \ge 16$

Actual significance level = $P(X \ge 16) = 0.0082$

c $X \sim Po(\lambda)$

$$H_0: \lambda = 4 \quad H_1: \lambda > 4$$

Assume H_0 , so that $X \sim Po(4)$

Significance level 5%, so require $P(X \ge c) < 0.05$

From the tables

$$P(X \ge 8) = 1 - P(X \le 7) = 1 - 0.9489 = 0.0511$$

and
$$P(X \ge 9) = 1 - P(X \le 8) = 1 - 0.9786 = 0.0214$$

$$P(X \ge 8) > 0.05$$
 and $P(X \ge 9) < 0.05$ so the critical value is 9

Hence the critical region is $X \ge 9$

Actual significance level = $P(X \ge 9) = 0.0214$

2 Let the random variable X denote the number of fish caught by the fisherman in a two-hour period.

$$H_0: \lambda = 2 \times 5 = 10$$
 $H_1: \lambda > 10$

Assume H_0 , so that $X \sim Po(10)$

Significance level 5%, so require $P(X \ge c) < 0.05$

From the tables

$$P(X \ge 15) = 1 - P(X \le 14) = 1 - 0.9165 = 0.0835$$

and
$$P(X \ge 16) = 1 - P(X \le 15) = 1 - 0.9513 = 0.0487$$

$$P(X \ge 15) > 0.05$$
 and $P(X \ge 16) < 0.05$ so the critical value is 16

Hence the critical region is $X \ge 16$

3 Let the random variable X denote the number of sales made by Hans in a 10-day period.

$$H_0: \lambda = 10 \times 0.8 = 8$$
 $H_1: \lambda > 8$

Assume H_0 , so that $X \sim Po(8)$

Significance level 5%, so require $P(X \ge c) < 0.05$

From the tables

$$P(X \ge 13) = 1 - P(X \le 12) = 1 - 0.9362 = 0.0638$$

and
$$P(X \ge 14) = 1 - P(X \le 13) = 1 - 0.9658 = 0.0342$$

$$P(X \ge 13) > 0.05$$
 and $P(X \ge 14) < 0.05$ so the critical value is 14

Hence the critical region is $X \ge 14$

4 Let the random variable X denote the number of defects found in $25 \,\mathrm{m}^2$ of cloth.

$$H_0: \lambda = 5 \times 1.3 = 6.5$$
 $H_1: \lambda < 6.5$

Assume H_0 , so that $X \sim Po(6.5)$

Significance level 5%, so require $P(X \le c) < 0.05$

From the tables

$$P(X \le 2) = 0.0430$$
 and $P(X \le 3) = 0.1118$

$$P(X \le 2) < 0.05$$
 and $P(X \le 3) > 0.05$ so the critical value is 2

Hence the critical region is $X \leq 2$

5 Let the random variable X denote the number of accidents at the crossroads in a 12-month period.

$$H_0: \lambda = 12 \times 0.6 = 6$$
 $H_1: \lambda < 6$

Assume H_0 , so that $X \sim Po(6)$

Significance level 5%, so require $P(X \le c) < 0.05$

From the tables

$$P(X \le 1) = 0.0174$$
 and $P(X \le 2) = 0.0620$

$$P(X \le 1) < 0.05$$
 and $P(X \le 2) > 0.05$ so the critical value is 1

Hence the critical region is $X \leq 1$

6 Let the random variable X denote the number of sales of the computer game in a 20-day period.

$$H_0: \lambda = 20 \times 0.35 = 7$$
 $H_1: \lambda > 7$

Assume
$$H_0$$
, so that $X \sim Po(7)$

Significance level 5%, so require $P(X \ge c) < 0.05$

From the tables

$$P(X \ge 12) = 1 - P(X \le 11) = 1 - 0.9467 = 0.0533$$

and
$$P(X \ge 13) = 1 - P(X \le 12) = 1 - 0.9730 = 0.0270$$

$$P(X \ge 12) > 0.05$$
 and $P(X \ge 13) < 0.05$ so the critical value is 13

Hence the critical region is $X \ge 13$

7 a $H_0: \lambda = 4$ $H_1: \lambda \neq 4$

Assume H_0 , so that $X \sim Po(4)$

Significance level 5%

If $X = c_1$ is the upper boundary of the lower critical region, require $P(X \le c_1)$ to be as close as possible to 2.5%

From the tables

$$P(X = 0) = 0.0183$$
 and $P(X \le 1) = 0.0916$

0.0183 is closer to 0.025, so $c_1 = 0$ and the lower critical region is X = 0

If $X = c_2$ is the lower boundary of the upper critical region, require $P(X \ge c_2)$ to be as close as possible to 2.5%

From the tables

$$P(X \ge 8) = 1 - P(X \le 7) = 1 - 0.9489 = 0.0511$$

and
$$P(X \ge 9) = 1 - P(X \le 8) = 1 - 0.9786 = 0.0214$$

0.0214 is closer to 0.025, so $c_2 = 9$ and the upper critical region is $X \ge 9$

Critical region is X = 0 or $X \ge 9$

Actual significance level = $P(X = 0) + P(X \ge 9) = 0.0183 + 0.0214 = 0.0397$

b $H_0: \lambda = 8$ $H_1: \lambda \neq 8$

Assume H_0 , so that $X \sim Po(8)$

Significance level 5%

If $X = c_1$ is the upper boundary of the lower critical region, require $P(X \le c_1)$ to be as close as possible to 2.5%

From the tables

$$P(X \le 2) = 0.0138$$
 and $P(X \le 3) = 0.0424$

0.0138 is closer to 0.025, so $c_1 = 2$ and the lower critical region is $X \leq 2$

If $X = c_2$ is the lower boundary of the upper critical region, require $P(X \ge c_2)$ to be as close as possible to 2.5%

From the tables

$$P(X \ge 14) = 1 - P(X \le 13) = 1 - 0.9658 = 0.0342$$

and
$$P(X \ge 15) = 1 - P(X \le 14) = 1 - 0.9827 = 0.0173$$

0.0173 is closer to 0.025, so $c_2 = 15$ and the upper critical region is $X \ge 15$

Critical region is $X \leq 2$ or $X \geq 15$

Actual significance level = $P(X \le 2) + P(X \ge 15) = 0.0138 + 0.0173 = 0.0311$

7 **c** $H_0: \lambda = 9.5$ $H_1: \lambda \neq 9.5$

Assume H_0 , so that $X \sim Po(9.5)$

Significance level 5%

If $X = c_1$ is the upper boundary of the lower critical region, require $P(X \le c_1)$ to be as close as possible to 2.5%

From the tables

$$P(X \le 3) = 0.0149$$
 and $P(X \le 4) = 0.0403$

0.0149 is closer to 0.025, so $c_1 = 3$ and the lower critical region is $X \leq 3$

If $X = c_2$ is the lower boundary of the upper critical region, require $P(X \ge c_2)$ to be as close as possible to 2.5%

From the tables

$$P(X \ge 16) = 1 - P(X \le 15) = 1 - 0.9665 = 0.0335$$

and
$$P(X \ge 17) = 1 - P(X \le 16) = 1 - 0.9823 = 0.0177$$

0.0177 is closer to 0.025, so $c_2 = 17$ and the upper critical region is $X \ge 17$

Critical region is $X \leq 3$ or $X \geq 17$

Actual significance level = $P(X \le 3) + P(X \ge 17) = 0.0149 + 0.0177 = 0.0326$

8 a Let the random variable X denote the number of incoming calls made in a 30-minute interval.

$$H_0: \lambda = 30 \times 0.25 = 7.5$$
 $H_1: \lambda \neq 7.5$

Assume H_0 , so that $X \sim Po(7.5)$

Significance level 5%

If $X = c_1$ is the upper boundary of the lower critical region, require $P(X \le c_1)$ to be as close as possible to 2.5%

From the tables

$$P(X \le 2) = 0.0203$$
 and $P(X \le 3) = 0.0591$

0.0203 is closer to 0.025, so $c_1 = 2$ and the lower critical region is $X \leq 2$

If $X = c_2$ is the lower boundary of the upper critical region, require $P(X \ge c_2)$ to be as close as possible to 2.5%

From the tables

$$P(X \ge 13) = 1 - P(X \le 12) = 1 - 0.9573 = 0.0427$$

and
$$P(X \ge 14) = 1 - P(X \le 13) = 1 - 0.9784 = 0.0216$$

0.0216 is closer to 0.025, so $c_2 = 14$ and the upper critical region is $X \ge 14$

Critical region is $X \leq 2$ or $X \geqslant 14$

- **b** Actual significance level = $P(X \le 2) + P(X \ge 14) = 0.0203 + 0.0216 = 0.0419$
- \mathbf{c} X = 11 is not in the critical region, so there is insufficient evidence to reject H_0 and to conclude that the rate of incoming calls has changed.

9 a Let the random variable X denote the number of defects found in a 35 m length of material.

$$H_0: \lambda = 35 \times \frac{1}{7} = 5$$
 $H_1: \lambda \neq 5$

Assume H_0 , so that $X \sim Po(5)$

Significance level 10%

If $X = c_1$ is the upper boundary of the lower critical region, require $P(X \le c_1) < 0.05$

From the tables

$$P(X \le 1) = 0.0404$$
 and $P(X \le 2) = 0.1247$

$$P(X \le 1) < 0.05$$
 and $P(X \le 2) > 0.05$ so $c_1 = 1$ and the lower critical region is $X \le 1$

If $X = c_2$ is the lower boundary of the upper critical region, require $P(X \ge c_2) < 0.05$

From the tables

$$P(X \ge 9) = 1 - P(X \le 8) = 1 - 0.9319 = 0.0681$$

and
$$P(X \ge 10) = 1 - P(X \le 9) = 1 - 0.9682 = 0.0318$$

$$P(X \ge 9) > 0.05$$
 and $P(X \ge 10) < 0.05$ so $c_2 = 10$ and the upper critical region is $X \ge 10$

Critical region is $X \leq 1$ or $X \geq 10$

- **b** Actual significance level = $P(X \le 1) + P(X \ge 10) = 0.0404 + 0.0318 = 0.0722$
- **10 a** A Poisson distribution would be suitable if emails arrive independently and at random, and at a constant average rate.
 - **b** Let the random variable X denote the number of emails received in a 15-minute period.

$$H_0: \lambda = 3 \times 3 = 9$$
 $H_1: \lambda \neq 9$

Assume H_0 , so that $X \sim Po(9)$

Significance level 5%

If $X = c_1$ is the upper boundary of the lower critical region, require $P(X \le c_1)$ to be as close as possible to 2.5%

From the tables

$$P(X \le 3) = 0.0212$$
 and $P(X \le 4) = 0.0550$

0.0212 is closer to 0.025, so $c_1 = 3$ and the lower critical region is $X \leq 3$

If $X = c_2$ is the lower boundary of the upper critical region, require $P(X \ge c_2)$ to be as close as possible to 2.5%

From the tables

$$P(X \ge 15) = 1 - P(X \le 14) = 1 - 0.9585 = 0.0415$$

and
$$P(X \ge 16) = 1 - P(X \le 15) = 1 - 0.9780 = 0.0220$$

0.0220 is closer to 0.025, so $c_2 = 16$ and the upper critical region is $X \ge 16$

Critical region is $X \leq 3$ or $X \geq 16$

- c Actual significance level = $P(X \le 3) + P(X \ge 16) = 0.0212 + 0.0220 = 0.0432$
- d X = 13 is not in the critical region, so there is insufficient evidence to reject H₀ and to conclude that the mean rate is different to 9 every 15 minutes (or 3 every 5 minutes as claimed by the company).

11 a From the cumulative probability tables,

$$P(X \le 2) = 0.0296 \text{ for } \lambda = 7, \text{ and } P(X \le 2) = 0.0138 \text{ for } \lambda = 8$$

This means $c \ge 8$

Considering the upper critical region

$$P(X \ge 15) = 1 - P(X \le 14) = 1 - 0.9585 = 0.0415$$
 for $\lambda = 9$

and
$$P(X \ge 15) = 1 - P(X \le 14) = 1 - 0.9827 = 0.0173$$
 for $\lambda = 8$

This means $c \leq 8$

The only positive interger satisfying both conditions is c = 8

b
$$P(X \le 2) + P(X \ge 15) = 0.0138 + 0.0173 = 0.0311$$