Hypothesis testing 4D

1 a $H_0: p = 0.3$ $H_1: p < 0.3$

Assume H_0 , so that $X \sim \text{Geo}(0.3)$

Significance level 5%

Require $P(X \ge c) < 0.05$

So
$$(1-0.3)^{c-1} < 0.05$$

$$(c-1)\log 0.7 < \log 0.05$$

$$c - 1 > \frac{\log 0.05}{\log 0.7}$$

c > 9.399

So the critical region is $X \ge 10$

- **b** Actual significance level = $P(X \ge 10) = (1 0.3)^9 = 0.0404 (4 \text{ d.p.})$
- **2 a** $H_0: p = 0.35$ $H_1: p < 0.35$

Assume H_0 , so that $X \sim \text{Geo}(0.35)$

Significance level 5%

Require
$$P(X \ge c) < 0.05$$

So
$$(1-0.35)^{c-1} < 0.05$$

$$(c-1)\log 0.65 < \log 0.05$$

$$c - 1 > \frac{\log 0.05}{\log 0.65}$$

c > 7.954

So the critical region is $X \ge 8$

- **b** Actual significance level = $P(X \ge 8) = (1 0.35)^7 = 0.0490 \text{ (4 d.p.)}$
- **3 a** $H_0: p = 0.05$ $H_1: p > 0.05$

Assume H_0 , so that $X \sim \text{Geo}(0.05)$

Significance level 10%

Require $P(X \ge c) < 0.1$

So
$$1 - (1 - 0.05)^c < 0.1$$

 $0.95^c > 0.9$

 $c\log 0.95 > \log 0.9$

$$c < \frac{\log 0.9}{\log 0.95}$$

c < 2.054

So the critical region is $X \leq 2$

b Actual significance level = $P(X \le 2) = 1 - (1 - 0.05)^2 = 0.0975$

4 a Let the random variable X denote the number of days Arun has to wait before winning a ticket.

$$H_0: p = 0.23$$
 $H_1: p < 0.23$

Assume
$$H_0$$
, so that $X \sim \text{Geo}(0.23)$

Significance level 5%

Require
$$P(X \ge c) < 0.05$$

So
$$(1-0.23)^{c-1} < 0.05$$

$$(c-1)\log 0.77 < \log 0.05$$

$$c - 1 > \frac{\log 0.05}{\log 0.77}$$

So the critical region is $X \ge 13$

- **b** Probability of incorrectly rejecting $H_0 = P(X \ge 13) = (1 0.23)^{12} = 0.0434$ (4 d.p.)
- **c** As X = 11 is not in the critical region, there is insufficient evidence to reject H₀.
- 5 a Let the random variable X denote the number of darts Dot throws until she hits a bullseye.

$$H_0: p = \frac{1}{3}$$
 $H_1: p < \frac{1}{3}$

Assume
$$H_0$$
, so that $X \sim \text{Geo}\left(\frac{1}{3}\right)$

Require
$$P(X \ge c) < 0.05$$

So
$$\left(\frac{2}{3}\right)^{c-1} < 0.05$$

$$(c-1)\log\left(\frac{2}{3}\right) < \log 0.05$$

$$c - 1 > \frac{\log 0.05}{\log \left(\frac{2}{3}\right)}$$

So the critical region is
$$X \geqslant 9$$

b Actual significance level = $P(X \ge 9) = \left(1 - \frac{1}{3}\right)^8 = 0.0390 \text{ (4 d.p.)}$

6 Let the random variable *X* denote the number of days before Rita next has a tremor.

$$H_0: p = 0.6 \quad H_1: p < 0.6$$

Assume H_0 , so that $X \sim \text{Geo}(0.6)$

Significance level 5%

Require
$$P(X \ge c) < 0.05$$

So
$$(1-0.6)^{c-1} < 0.05$$

$$(c-1)\log 0.4 < \log 0.05$$

$$c - 1 > \frac{\log 0.05}{\log 0.4}$$

So the critical region is $X \ge 5$

Challenge

a
$$H_0$$
: $p = 0.009$ H_1 : $p \neq 0.009$

Assume H_0 , so that $X \sim \text{Geo}(0.009)$

Significance level 5%

If $X = c_1$ is the lower boundary of the upper critical region, require $P(X \ge c_1)$ to be as close as possible to 2.5%. First, find $P(X \ge a) < 0.025$

So
$$(1-0.009)^{a-1} < 0.025$$

$$a-1 > \frac{\log 0.025}{\log 0.991} \Rightarrow a > 409.028$$

So c_1 could be 409 or 410; $P(X \ge 409) = 0.025006$ and $P(X \ge 410) = 0.024781$, and as $P(X \ge 409)$ is closer to 0.025, the upper critical region is $X \ge 409$

If c_2 is the upper boundary of the lower critical region, require $P(X \le c_2)$ to be as close as possible to 2.5%. First, find $P(X \le b) < 0.025$

So
$$1 - (1 - 0.009)^b < 0.025$$

$$0.991^b > 0.975$$

$$b < \frac{\log 0.975}{\log 0.991} \Rightarrow b < 2.8$$

So c_2 could be 2 or 3; $P(X \le 2) = 0.0179$ and $P(X \le 3) = 0.02676$ and as $P(X \le 3)$ is

closer to 0.025, the lower critical region is $X \leq 3$

So the critical region is $X \le 3$ or $X \ge 409$

b Probability of incorrectly rejecting $H_0 = P(X \le 3) + P(X \ge 409)$

$$= 0.02676 + 0.02500 = 0.0518 (4 d.p.)$$

c As X = 5 is not in the critical region, there is insufficient evidence to reject H₀.