Hypothesis testing Mixed exercise 4

1 a Let the random variable X denote the number of vehicles passing the point in a 10-minute period.

Use the Poisson distribution model
$$X \sim Po\left(\frac{59}{6}\right)$$
, i.e. $X \sim Po(6.5)$
 $e^{-6.5} 6.5^{6}$

$$P(X=6) = \frac{e - 6.5}{6!} = 0.1575 \ (4 \ d.p.)$$

- **b** Using the tables $P(X \ge 8) = 1 - P(X \le 7) = 1 - 0.6728 = 0.3272$
- **c** $H_0: \lambda = 6.5$ $H_1: \lambda < 6.5$

Assume H_0 , so that $X \sim Po(6.5)$ Significance level 5% From the tables $P(X \le 2) = 0.0430$ 0.0430 < 0.05

There is sufficient evidence at the 5% level to reject H_0 , and conclude that the number of vehicles passing the point in a given period has decreased.

2 Let the random variable *X* denote the deformed red blood cells found in a 2.5 ml sample of Francesca's blood.

 $H_0: \lambda = 3.2 \times 2.5 = 8$ $H_1: \lambda < 8$

Assume H_0 , so that $X \sim Po(8)$

Significance level 5%

From the tables $P(X \le 4) = 0.0996$

0.0996 > 0.05

There is insufficient evidence at the 5% level to reject H_0 and to suggest that the mean number of deformed red blood cells has decreased.

3 Let the random variable X denote the number of days it takes Peter to complete the first crossword. $H_0: p = 0.2$ $H_1: p < 0.2$

Assume H_0 , so that $X \sim \text{Geo}(0.2)$

Significance level 5%

 $P(X \ge 7) = (1 - 0.2)^6 = 0.2621 (4 \text{ d.p.})$ 0.2621 > 0.05

There is insufficient evidence at the 5% level to reject H_0 and to suggest that the crosswords are more difficult.

4 a Let the random variable X denote the number of days until Roisin sees the first fall of snow, so $X \sim \text{Geo}(0.45)$

 $P(X \ge 3) = (1 - 0.45)^2 = 0.3025$

4 b $H_0: p = 0.45$ $H_1: p < 0.45$

Assume H_0 , so that $X \sim \text{Geo}(0.45)$

Significance level 5%

 $P(X \ge 7) = (1 - 0.45)^6 = 0.0277 (4 \text{ d.p.})$

There is sufficient evidence at the 5% level to reject H_0 , and conclude that the meteorologist is correct.

5 a Let the random variable X denote the number of calls that Scoobie puts through to the wrong extension during a day in which he receives 150 calls, so $X \sim B(150, 0.03)$. Using a Poisson approximation $X \sim Po(150 \times 0.03)$, i.e. $X \sim Po(4.5)$

$$P(X=5) = \frac{e^{-4.5} \, 4.5^5}{5!} = 0.1708 \ (4 \text{ d.p.})$$

- **b** From the tables $P(X \le 3) = 0.3423$
- **c** Let the random variable *Y* denote the number of calls that Waldo puts through to the wrong extension during a day in which he receives 300 calls.

$$H_0: \lambda = 2 \times 4.5 = 9$$
 $H_1: \lambda < 9$

Assume H_0 , so that $X \sim Po(9)$

Significance level 5%

From the tables $P(X \le 4) = 0.0550$

0.0550 > 0.05

There is insufficient evidence at the 5% level to reject H_0 and there is therefore no evidence to suggest that the Waldo has decreased the rate at which calls are put through to the wrong extension.

6 a Let the random variable X denote the number of breakdowns in a one-month period, so $X \sim Po(1.75)$.

$$P(X=3) = \frac{e^{-1.75} 1.75^3}{3!} = 0.1552 \ (4 \text{ d.p.})$$

b Let the random variable *Y* denote the number of breakdowns in a two-month period, so $Y \sim Po(3.5)$.

Using the tables

 $P(Y \ge 6) = 1 - P(Y \le 5) = 1 - 0.8576 = 0.1424$

c Let the random variable Z denote the number of months in a four-month period in which there are exactly 3 breakdowns. Use the probability from part **a** to 5 d.p., so $Z \sim B(4, 0.15522)$.

$$P(Z=2) = {\binom{4}{2}} \times (0.15522)^2 \times (1 - 0.15522)^2 = 0.1032 \ (4 \text{ d.p.})$$

- 6 d Let the random variable M denote the number of breakdowns in a four-month period, so $M \sim Po(7)$.
 - $H_0: \lambda = 7$ $H_1: \lambda < 7$

Assume H_0 , so that $M \sim Po(7)$

Significance level 5%, so require $P(X \le c) < 0.05$

From the tables $P(M \le 2) = 0.0296$ and $P(M \le 3) = 0.0818$

 $P(M \le 2) < 0.05$ and $P(M \le 3) > 0.05$ so the critical value is 2

Hence the critical region is $M \leq 2$

Further Statistics 1

- 6 e Actual significance level = $P(M \le 2) = 0.0296$
- 7 Let the random variable X denote the number of televisions sold in a two-day period. $H_0: \lambda = 2 \times 3.5 = 7$ $H_1: \lambda > 7$ Assume II as that X = Pa(7)

Assume H_0 , so that $X \sim Po(7)$

Significance level 5%

From the tables $P(X \ge 11) = 1 - P(X \le 10) = 1 - 0.9015 = 0.0985$

0.0985 > 0.05

There is insufficient evidence at the 5% level to reject H_0 and therefore no evidence to suggest that advert increased the sales.

8 a Let the random variable X denote the rate of visits to the website on a Saturday.

$$\begin{split} H_{0} : \lambda &= 8.5 \quad H_{1} : \lambda > 8.5 \\ \text{Assume } H_{0} \text{, so that } X \sim \text{Po}(8.5) \\ \text{Significance level 5\%} \\ \text{From the tables } P(X \geq 12) = 1 - P(X \leq 11) = 1 - 0.8487 = 0.1513 \\ 0.1513 > 0.05 \\ \text{There is insufficient evidence at the 5\% level to reject } H_{0} \text{ and therefore no evidence to suggest that the rate of visits is greater on a Saturday.} \end{split}$$

- **b** Requires finding the smallest positive integer *c* such that $P(X \ge c) < 0.05$ From the tables $P(X \ge 14) = 1 - P(X \le 13) = 1 - 0.9486 = 0.0514$ and $P(X \ge 15) = 1 - P(X \le 14) = 1 - 0.9726 = 0.0274$ $P(X \ge 14) > 0.05$ and $P(X \ge 15) < 0.05$, so c = 15
- 9 Let the random variable X denote the number of workers that are absent for at least one day in the last month, so $X \sim B(200, 0.05)$. Using a Poisson approximation $X \sim Po(200 \times 0.05)$, i.e. $X \sim Po(10)$ $H_0: \lambda = 10$ $H_1: \lambda > 10$

Assume H_0 , so that $X \sim Po(10)$

Significance level 5%

From the tables $P(X \ge 15) = 1 - P(X \le 14) = 1 - 0.9165 = 0.0835$

0.0835 > 0.05

There is insufficient evidence at the 5% level to reject H_0 and no evidence to suggest that the percentage is higher than the manager thinks.

10 a Let the random variable X denote the number of products tested until the first defective one is found, so $X \sim \text{Geo}(0.15)$

 $P(X = 5) = 0.15(1 - 0.15)^4 = 0.0783 (4 \text{ d.p.})$

b $P(X \ge 3) = (1 - 0.15)^2 = 0.7225$

- **10 c** $H_0: p = 0.15$ $H_1: p < 0.15$ Assume H_0 , so that $X \sim \text{Geo}(0.15)$ Significance level 5% Require $P(X \ge c) < 0.05$ So $(1-0.15)^{c-1} < 0.05$ $(c-1)\log 0.85 < \log 0.05$ $c-1 > \frac{\log 0.05}{\log 0.85}$ c > 19.433So the critical region is $X \ge 20$
 - **d** Actual significance level = $P(X \ge 20) = (1 0.15)^{19} = 0.0456$ (4 d.p.)
- **11 a** Let the random variable X denote the number of hurricanes in the area in August. Then use a Poisson model and test $H_0: \lambda = 4$ $H_1: \lambda > 4$
 - b For the null hypothesis (H₀: λ = 4) to be rejected at 5% level of significance find the smallest positive integer *c* such that P(X ≥ c) < 0.05 Assume H₀, so that X ~ Po(4) Significance level 5%, so require P(X ≥ c) < 0.05 From the tables P(X ≥ 8) = 1 - P(X ≤ 7) = 1 - 0.9489 = 0.0511 and P(X ≥ 9) = 1 - P(X ≤ 8) = 1 - 0.9786 = 0.0214 P(X ≥ 8) > 0.05 and P(X ≥ 9) < 0.05 so the critical value is 9 The critical region is X ≥ 9 and the number of hurricanes must increase to 9 for H₀ to be rejected.
 c As X = 8 is not in the critical region there is insufficient evidence to reject H₀ and therefore the
 - **c** As X = 8 is not in the critical region there is insufficient evidence to reject H₀ and therefore the scientist's suggestion should be rejected.
- 12 a Let the random variable X denote the number of heads recorded in 30 spins of the coin, so X ~ B(30, p). As p is not known to be small, the Poisson approximation cannot be used. H₀: p = 0.5 H₁: p < 0.5 Assume H₀, so that X ~ B(30,0.5) Significance level 2%, so require P(X ≤ c) < 0.02 From the binomial cumulative distribution tables P(X ≤ 8) = 0.0081 and P(X ≤ 9) = 0.0214 P(X ≤ 8) < 0.02 and P(X ≤ 9) > 0.02 so the critical value is 8

Hence the critical region is $X \leq 8$

12 b Let the random variable Y denote the number of coin spins until it lands on heads for the first time, so $X \sim \text{Geo}(p)$

How for p = 0.5 H₁: p < 0.5Assume H₀, so that $Y \sim \text{Geo}(0.5)$ Significance level 2% Require $P(Y \ge c) < 0.02$ So $(1-0.5)^{c-1} < 0.02$ $c-1 > \frac{\log 0.02}{\log 0.5}$ c > 6.644So the critical region is $Y \ge 7$

c The probability that Alison has incorrectly rejected H₀ is $P(X \le 8) = 0.0081$ The probability that Paul has incorrectly rejected H₀ is $P(Y \ge 7) = 0.5^6 = 0.0156$

Challenge

a Let *N* denote the number of wells sunk until the oil company sinks before it strike oil for the third time in the new region, so $N \sim \text{Negative B}(3, p)$

This assumes that the probability of striking oil remains the same for each well drilled.

b $H_0: p = 0.18$ $H_1: p > 0.18$

Assume H_0 , so that $N \sim \text{Negative B}(3, 0.18)$

Significance level 5%

Require $P(N \le c) < 0.05$

Need to calculate cumulative probability distributions

$$P(N \le 3) = P(N = 3) = {\binom{2}{2}} 0.18^3 (1 - 0.18)^0 = 0.00583...$$

$$P(N \le 4) = P(N \le 3) + P(N = 4) = 0.00583 + {\binom{3}{2}} 0.18^3 (1 - 0.18)^1 = 0.00583 + 0.01435 = 0.02018$$

$$P(N \le 5) = P(N \le 4) + P(N = 5) = 0.02018 + {\binom{4}{2}} 0.18^3 (1 - 0.18)^2 = 0.02018 + 0.02353 = 0.04371$$

$$P(N \le 6) = P(N \le 5) + P(N = 6) = 0.04371 + {\binom{5}{2}} 0.18^3 (1 - 0.18)^3 = 0.04371 + 0.03216 = 0.07587$$
As $P(N \le 5) \le 0.05$ and $P(N \le 6) \ge 0.05$, the critical ratios is $N \ge 5$.

As $P(N \le 5) < 0.05$ and $P(N \le 6) > 0.05$, the critical region is $N \ge 5$

c Actual significance level = $P(N \le 5) = 0.0437$ (4 d.p.)