Central limit theorem 5A

1 a The population is normal so $X \sim N(10, 2^2)$

Variance of the sample =
$$\frac{\sigma^2}{n} = \frac{2^2}{6} = \frac{2}{3}$$
, so $\overline{X} \sim N\left(10, \frac{2}{3}\right)$

Using a calculator:

$$P(\overline{X} > 12) = 1 - P(\overline{X} < 12) = 1 - 0.9928 = 0.0072 \text{ (4 d.p.)}$$

- **b** As the population is normally distributed, the sample mean is also normally distributed and the answer to part a is not an approximation.
- 2 a Let X be the amount of drink in a carton.

Variance of the sample =
$$\frac{\sigma^2}{n} = \frac{1.5^2}{4} = 0.5625$$
, so $\overline{X} \sim N(40, 0.5625)$

Using a calculator:

$$P(\overline{X} > 40.5) = 1 - P(\overline{X} < 40.5) = 1 - 0.7475 = 0.2525 \text{ (4 d.p.)}$$

b Variance of the sample = $\frac{\sigma^2}{n} = \frac{1.5^2}{49} = 0.04918...$, so $\overline{X} \sim N(40, 0.045918)$

$$P(\overline{X} > 40.5) = 1 - P(\overline{X} < 40.5) = 1 - 0.9902 = 0.0098 \text{ (4 d.p.)}$$

3 a Let L be the length of a bolt. The distribution of L is unknown.

Variance of the sample =
$$\frac{\sigma^2}{n} = \frac{0.2^2}{100} = 0.0004$$

So using the central limit theorem $\overline{L} \approx N(3.03, 0.0004)$

Using a calculator:

$$P(\overline{L} > 3) = 0.0668 (4 \text{ d.p.})$$

b Let \overline{M} be the mean length of a bolt from a sample of n bolts. Then

$$\overline{M} \sim N\left(3.03, \frac{0.2^2}{n}\right)$$
 and require $P(\overline{M} < 3) < 0.01$

Standardise the sample mean

$$P(\overline{M} < 3) = P\left(Z < \frac{3 - 3.03}{\frac{0.2}{\sqrt{n}}}\right)$$
 and require $P\left(Z < \frac{3 - 3.03}{\frac{0.2}{\sqrt{n}}}\right) < 0.01$

Using the table for the percentage points of the normal distribution (see Appendix, page 190):

$$P(Z < -2.3263) = 0.01$$

So
$$\frac{3-3.03}{\frac{0.2}{\sqrt{r}}}$$
 < -2.3263

$$\Rightarrow \frac{0.03\sqrt{n}}{0.2} > 2.3263$$
 (dividing by -1 so reversing the inequality)

$$\Rightarrow \sqrt{n} > 15.5086...$$

$$\Rightarrow n > 240.51...$$

So n = 241 is the minimum sample size required for $P(\overline{M} < 3) < 0.01$

4
$$\mu = E(X) = \frac{1}{5}(1+2+3+4+5) = 3$$

$$\sigma^2 = \text{Var}(X) = \frac{1}{5}(1+2^2+3^2+4^2+5^2) - \mu^2 = \frac{55}{5} - 9 = 2$$

Using the central limit theorem $X \approx N\left(3, \frac{2}{40}\right)$

$$P(\overline{X} > 3.2) = 1 - P(\overline{X} < 3.2) \approx 1 - 0.8145 = 0.1855 \text{ (4 d.p.)}$$

5 a Let the random variable S = score on the dice

$$E(S) = \frac{1}{6}(1+2+3+4+5+6) = \frac{21}{6} = 3.5$$

$$Var(S) = \frac{1}{6}(1+2^2+3^2+4^2+5^2+6^2) - 3.5^2 = \frac{91}{6} - \frac{49}{4} = \frac{182}{12} - \frac{147}{12} = \frac{35}{12}$$

So by the central limit theorem, $\overline{S} \approx N\left(3.5, \frac{\frac{35}{12}}{35}\right)$, i.e. $\overline{S} \approx N\left(3.5, \frac{1}{12}\right)$

$$P(\overline{S} > 4) = 1 - P(\overline{S} > 4) = 1 - 0.9584 = 0.0416 \text{ (4 d.p.)}$$

b Let the random variable $T = \text{total score of } 35 \text{ rolls of the dice, so } T = 35\overline{S}$

$$P(T < 100) = P\left(S < \frac{100}{35}\right)$$

$$P\left(S < \frac{100}{35}\right) = 0.0130 \text{ (4 d.p.)}$$

6 Let the random variable S = the number of sixes recorded in 30 rolls of the dice, so $S \sim B\left(30, \frac{1}{6}\right)$

Using the formula for the mean and variance of a binomial distribution

$$E(S) = np = 30 \times \frac{1}{6} = 5$$

$$Var(S) = np(1-p) = 30 \times \frac{1}{6} \times \frac{5}{6} = \frac{25}{6}$$

So by the central limit theorem
$$\overline{S} \approx N\left(5, \frac{\frac{25}{6}}{25}\right)$$
, i.e. $\overline{S} \approx N\left(5, \frac{1}{6}\right)$

And by calculator $P(\overline{S} < 4.5) = 0.1103 \text{ (4 d.p.)}$

7 a Probabilities sum to 1 so

$$0.1 + 3k + k + 0.3 = 1 \Rightarrow 4k = 0.6 \Rightarrow k = 0.15$$

b $E(X) = 2 \times (3 \times 0.15) + 3 \times 0.15 + 5 \times 0.3 = 2.85$

$$Var(X) = (4 \times 0.45 + 9 \times 0.15 + 25 \times 0.3) - 2.85^{2}$$

$$=10.65 - 8.1225 = 2.5275$$

So by the central limit theorem $\overline{X} \approx N(2.85, 0.025275)$

And by calculator
$$P(\bar{X} > 3) = 1 - P(\bar{X} < 3) \approx 1 - 0.8273 = 0.1727 \text{ (4 d.p.)}$$

c Answer is an approximation, but as n = 100 is large it will be fairly accurate.

8 Let the random variable S = score on the dice. Then $E(S) = \mu = 3.5$ and $Var(S) = \sigma^2 = \frac{35}{12}$

So by the central limit theorem
$$\overline{S} \approx N\left(3.5, \frac{35}{12n}\right)$$

Require $P(\overline{S} < 3.4) + P(\overline{S} > 3.6) < 0.01$ and as the sample mean is normally distributed and symmetrical about the mean, this is equivalent to $P(\overline{S} > 3.6) < 0.005$

Standardise the sample mean

$$P(\overline{S} > 3.6) = P\left(Z > \frac{0.1}{\sqrt{\frac{35}{12n}}}\right)$$
 and require $P\left(Z > \frac{0.1}{\sqrt{\frac{35}{12n}}}\right) < 0.005$

Using the table for the percentage points of the normal distribution:

$$P(Z > 2.5758) = 0.005$$

So
$$\frac{0.1}{\sqrt{\frac{35}{12n}}} > 2.5758$$

 $\Rightarrow \frac{\sqrt{12n}}{10\sqrt{35}} > 2.5758$
 $\Rightarrow \frac{12n}{3500} > 6.63474...$

$$\Rightarrow n > 1935.13...$$

So n = 1936 is the minimum sample size required for $P(\overline{S} < 3.4) + P(\overline{S} > 3.6) < 0.01$, i.e. for there being a less than 1% chance that the mean of all scores differs from 3.5 by more than 0.1

- a The salaries in a company are unlikely to be symmetrically distributed so a normal distribution would not be a good model.
 - **b** Let the random variable X = the salary of an employee. Then using the central limit theorem

$$\overline{X} \approx N \left(28500, \frac{6800^2}{15}\right)$$

i
$$P(\overline{X} < 25\ 000) = 0.0231\ (4\ d.p.)$$

ii
$$P(25\ 000 < \overline{X} < 30\ 000) = P(\overline{X} < 30\ 000) - P(\overline{X} < 25\ 000)$$

= $0.80354 - 0.02311 = 0.7804\ (4\ d.p.)$

The estimates are likely to be inaccurate given the distribution of employee salaries are unlikely to be normal and given the relatively small sample size.

10 Let the random variable *T* be the length of time taken to repair this particular fault. Assume the time taken to repair the fault is normally distributed. Then

$$T \sim N(\mu, 2.5^2)$$
 and $\overline{T} \sim N\left(\mu, \frac{2.5^2}{n}\right)$ and require $P(\overline{T} > \mu + 0.5) = 0.025$

Standardise the sample mean

$$P(\overline{T} > \mu + 0.5) = P\left(Z > \frac{\mu + 0.5 - \mu}{\frac{2.5}{\sqrt{n}}}\right) \text{ and so require } P\left(Z > \frac{\sqrt{n}}{5}\right) < 0.025$$

Using the table for the percentage points of the normal distribution: P(Z > 1.9600) = 0.025

So
$$\frac{\sqrt{n}}{5} > 1.9600$$

 $\Rightarrow \sqrt{n} > 9.8$
 $\Rightarrow n > 96.04$

So n = 97 is the minimum sample size required.