Central limit theorem Mixed Exercise 5

1 By the central limit theorem $\overline{X} \approx N(5, \frac{1}{100})$, i.e. $\overline{X} \approx N(5, 0.01)$ P($\overline{X} > 5.2$) = 1 – P($\overline{X} < 5.2$) \approx 1 – 0.9772 = 0.0228 (4 d.p.)

2
$$E(X) = \frac{1}{6}(1+2+4+5+7+8) = \frac{27}{6} = 4.5$$

 $Var(X) = \frac{1}{6}(1+2^2+4^2+5^2+7^2+8^2) - 4.5^2$
 $= \frac{159}{6} - \frac{729}{36} = \frac{225}{36} = \frac{25}{4} = 6.25$
By the central limit theorem $\overline{X} \approx N\left(4.5, \frac{6.25}{20}\right)$, i.e. $\overline{X} \approx N$

 $P(\bar{X} < 4) \approx 0.1855 (4 \text{ d.p.})$

3 $X \sim N(1,1)$ and by the central limit theorem $\overline{X} \sim N\left(1,\frac{1}{\sqrt{n}}\right)$ Standardise the sample mean.

P($\overline{X} < 0$) = P($Z < -\sqrt{n}$) and so require P($Z > -\sqrt{n}$) < 0.05 Using the table for the percentage points of the normal distribution: P(Z = -1.645) = 0.05 $\Rightarrow -\sqrt{n} < -1.645$ $\Rightarrow n > 2.706$

So minimum sample size is n = 3 for the probability of a negative sample mean being less than 5%

N(4.5, 0.3125)

4 Let the random variable X denote the number of sixes thrown by a student in 10 rolls of the dice, so $X \sim B\left(10, \frac{1}{2}\right)$

$$E(X) = np = 10 \times \frac{1}{6} = \frac{5}{3}$$

Var(X) = $np(1-p) = \frac{5}{3} \times \frac{5}{6} = \frac{25}{18}$
By the central limit theorem $\overline{X} \approx \sim N\left(\frac{5}{3}, \frac{25}{18 \times 20}\right)$, i.e. $\overline{X} \approx \sim N\left(\frac{5}{3}, \frac{5}{72}\right)$
 $P(\overline{X} > 2) = 1 - P(\overline{X} < 2) \approx 1 - 0.8970 = 0.1030$ (4 d.p.)

5 a Let X be the number of buses that arrive in a 10-minute period, then $X \sim Po(2)$ $P(X = 3) = \frac{e^{-2} 2^{3}}{3!} = 0.1804 (4 \text{ d.p.})$ **5** b Let T be the number of buses that arrive in a two-hour period, so $T = 12\overline{X}$

By the central limit theorem $\overline{X} \approx \sim N\left(2, \frac{2}{12}\right)$, i.e. $\overline{X} \approx \sim N\left(2, \frac{1}{6}\right)$

$$P(T \ge 25) = P\left(X \ge \frac{25}{12}\right)$$
$$P\left(\bar{X} \ge \frac{25}{12}\right) = 1 - P\left(\bar{X} < \frac{25}{12}\right) \approx 1 - 0.5809 = 0.4191 \text{ (4 d.p.)}$$

- 6 a Let the discrete random variable X be the number of children that a couple will have before having a daughter, then $X \sim \text{Geo}(0.5)$ $P(X > 2) = (1 - 0.5)^2 = 0.5^2 = 0.25$
 - **b** $E(X) = \frac{1}{p} = \frac{1}{0.5} = 2$ $Var(X) = \frac{1-p}{p^2} = \frac{0.5}{0.5^2} = 2$

By the central limit theorem $\overline{X} \approx \sim N\left(2, \frac{2}{10}\right)$, i.e. $\overline{X} \approx \sim N(2, 0.2)$

If $\overline{X} > 2.4$, the 10 couples will have more than 24 children P($\overline{X} > 2.4$) = 1 – P($\overline{X} < 2.4$) \approx 1 – 0.8145 = 0.1855 (4 d.p.)

7 a Let the random variable X be the mass of an egg, then $X \sim N(60, 25)$ and $\overline{X} \sim N\left(60, \frac{25}{48}\right)$

 $P(\overline{X} > 59) = 1 - P(\overline{X} < 59) = 1 - 0.0829 = 0.9171 (4 \text{ d.p.})$

- **b** The answer in part **a** is not an estimate because the sample is taken from a population that is normally distributed.
- **c** Let the random variable *Y* is the number of double yolk eggs in a crate of 48 eggs, so $Y \sim B(48, 0.1)$
 - $E(Y) = np = 48 \times 0.1 = 4.8$ Var(Y) = np(1-p) = 4.8 × 0.9 = 4.32

By the central limit theorem $\overline{Y} \approx \sim N\left(4.8, \frac{4.32}{30}\right)$, i.e. $\overline{Y} \approx \sim N(4.8, 0.144)$

The probability that the sample of 30 crates will contain fewer than 150 double-yolk eggs is $P(\overline{Y} < 5)$ as $30 \times 5 = 150$ $P(\overline{Y} < 5) \approx 0.7009$ (4 d.p.)

8 Consider a sample of 100 cups of coffee, so $\overline{S} \sim N(4.9, 0.0064)$. One pack of milk powder will be sufficient, if $100\overline{S} < 500$, i.e. $\overline{S} < 5$ $P(\overline{S} < 5) = 0.8944$ (4 d.p.) 9 Let the random variable be X, so by the central limit theorem $\overline{X} \approx -N\left(40, \frac{9}{n}\right)$ Required to find minimum *n* such that $P(\overline{X} > 42) < 0.05$ Standardise the sample mean using $Z = \frac{\overline{X} - \mu}{\sigma}$, $\mu = 40$ and $\sigma = \frac{3}{\sqrt{n}}$ So for $\overline{X} = 42$, $Z = \frac{(42 - 40)\sqrt{n}}{3} = \frac{2\sqrt{n}}{3}$ and $P(\overline{X} > 42) = P\left(Z > \frac{2\sqrt{n}}{3}\right)$ Using the table for the percentage points of the normal distribution;

P(Z > 1.6449) = 0.05So $\frac{2\sqrt{n}}{3} > 1.6449$ $\Rightarrow \sqrt{n} > 2.46735$ $\Rightarrow n > 6.0878...$

So n = 7 is the minimum sample size required for $P(\overline{X} > 42) < 0.05$

10 Let the random variable be X, so by the central limit theorem $\overline{X} \approx -N\left(35, \frac{9}{20}\right)$ P($\overline{X} > 37$) = 1 - P($\overline{X} < 37$) \approx 1 - 0.9986 = 0.0014 (4 d.p.)

11 a The table describes the distribution of *X*

x	0	1
P(X=x)	0.4	0.6

E(X) = 0.6, $Var(X) = 0.6 - 0.6^2 = 0.24$

b By the central limit theorem $\overline{X} \approx N\left(0.6, \frac{0.24}{500}\right)$, i.e. $\overline{X} \approx N(0.6, 0.00048)$ $P(\overline{X} > 0.63) + P(\overline{X} < 0.57) = 1 - P(\overline{X} < 0.63) + P(\overline{X} < 0.57)$ $\approx 1 - 0.91454 + 0.08545 = 0.1709 \text{ (4 d.p.)}$

Further Statistics 1

11 c Required to find minimum *n* such that $P(0.57 < \overline{X} < 0.63) > 0.95$ Standardise the sample mean using $Z = \frac{\overline{X} - \mu}{\sigma}$, $\mu = 0.6$ and $\sigma = \sqrt{\frac{0.24}{n}}$ So for $\overline{X} = 42$, $Z = \frac{(42 - 40)\sqrt{n}}{3} = \frac{2\sqrt{n}}{3}$ and $P(\overline{X} > 42) = P\left(Z > \frac{2\sqrt{n}}{3}\right)$ So require $P\left(-\frac{0.03\sqrt{n}}{\sqrt{0.24}} < Z < \frac{0.03\sqrt{n}}{\sqrt{0.24}}\right) > 0.95$ $\Rightarrow 1 - 2P\left(Z < -\frac{0.03\sqrt{n}}{\sqrt{0.24}}\right) > 0.95$ (by the symmetry of the normal distribution) $\Rightarrow P\left(Z < -\frac{0.03\sqrt{n}}{\sqrt{0.24}}\right) < 0.025$ Using the table for the percentage points of the normal distribution P(Z < -1.960) = 0.025

$$\Rightarrow -\frac{0.03\sqrt{n}}{\sqrt{0.24}} < -1.960$$
$$\Rightarrow \sqrt{n} > \frac{1.960 \times \sqrt{0.24}}{0.03} \Rightarrow \sqrt{n} > 32.0066...$$
$$\Rightarrow n > 1024.42...$$
So $n = 1025$

Challenge

$$X_1 + \dots + X_n \sim N(n\mu, n\sigma^2)$$
 and so
 $\overline{X} = \frac{1}{n}(X_1 + \dots + X_n) \sim N\left(\frac{n\mu}{n}, \frac{n\sigma^2}{n^2}\right) = N\left(\mu, \frac{\sigma^2}{n}\right)$