Chi-squared tests 6B

- 1 The data will be presented as seven frequencies, with a specified total of 50, so there are six degrees of freedom.
- 2 From the tables $\chi_5^2(5\%) = 11.070$

3 a
$$\chi_5^2(5\%) = 11.070$$

b
$$\chi_8^2(1\%) = 20.090$$

$$\mathbf{c}$$
 $\chi_{10}^2(10\%) = 23.209$

4
$$\chi_{10}^2(5\%) = 18.307$$

5
$$\chi_8^2(10\%) = 13.362$$

6
$$\chi_8^2(99\%) = 1.646$$
, so $P(\chi_8^2 > 1.646) = 99\%$
So $y = 1.646$

7
$$\chi_5^2(95\%) = 1.145$$
, so $P(\chi_5^2 > 1.145) = 95\%$
So $y = 1.145$

8 a
$$P(Y < y) = 1 - P(Y > y)$$

So $P(Y < y) = 0.05 \Rightarrow P(Y > y) = 0.95$
 $\chi_{12}^{2}(95\%) = 5.226$, so $P(\chi_{12}^{2} > 5.226) = 95\%$
 $y = 5.226$

b
$$P(Y < y) = 0.95 \Rightarrow P(Y > y) = 0.05$$

 $\chi_{12}^2(5\%) = 21.026$, so $P(\chi_{12}^2 > 21.026) = 5\%$
 $y = 21.026$

9 a Let $X \sim \text{Geo}(0.5)$. $P(X = x) = 0.5^x$ so the expected results should be 50×0.5^x The final column must be adjusted to be $x \ge 5$ as X is assumed to have a geometric distribution and can take values greater than 5. So the final expected result is $50 \times (P(X = x) \ge 5)$

x	1	2	3	4	≥5
Observed (O _i)	24	13	6	6	2
Expected (E_i)	25	12.5	6.25	3.125	3.125

Since we require all expected values to be at least 5, the final two columns must be combined to a single column for $x \ge 4$, with observed value 8 and expected value 6.25.

b After combining the cells, there remain 4 data cells with a constraint, so v = 3 So the critical value is $\chi_3^2(1\%) = 11.345$.