Quality of tests 8B

1 a
$$H_0: \mu = 50$$
 $H_1: \mu > 50$

Assume
$$H_0$$
, so that $\overline{X} \sim N\left(50, \frac{3^2}{20}\right)$

Standardise the \bar{X} variable

$$Z = \frac{\overline{X} - 50}{\frac{3}{\sqrt{70}}} = \frac{\sqrt{20}(\overline{X} - 50)}{3}$$

Significance level 1%

From the tables, the 1% critical region for Z is Z > 2.3263

So the critical region for \overline{X} is given by

$$\frac{\sqrt{20}(\overline{X} - 50)}{3} > 2.3263$$

$$\Rightarrow \overline{X} > 51.5605...$$

b
$$P(Type\ I\ error) = significance\ level = 0.01$$

c Using the normal cumulative distribution function on a calculator:

P(Type II error) =
$$P(\overline{X} \le 51.5605... | \mu = 53) = 0.0159 (4 \text{ d.p.})$$

2 a
$$H_0: \mu = 30$$
 $H_1: \mu < 30$

Assume
$$H_0$$
, so that $\overline{X} \sim N\left(30, \frac{2^2}{16}\right)$

Standardise the \overline{X} variable

$$Z = \frac{\overline{X} - 30}{\frac{2}{4}} = 2(\overline{X} - 30)$$

Significance level 5%

From the tables, the 5% critical region for Z is Z < -1.6449

So the critical region for \overline{X} is given by

$$2(\bar{X} - 30) < -1.6449$$

 $\Rightarrow \bar{X} > 29.17755...$

b
$$P(Type\ I\ error) = significance\ level = 0.05$$

c Using the normal cumulative distribution function on a calculator:

P(Type II error) =
$$P(\overline{X} \ge 29.17755.... | \mu = 28.5)$$

= $1 - P(\overline{X} < 29.17755.... | \mu = 28.5) = 1 - 0.9123 = 0.0877 (4 d.p.)$

3 a
$$H_0: \mu = 40$$
 $H_1: \mu \neq 40$

Assume
$$H_0$$
, so that $\overline{X} \sim N\left(40, \frac{4^2}{25}\right)$

Standardise the \overline{X} variable

$$Z = \frac{\overline{X} - 40}{\frac{4}{5}} = 1.25(\overline{X} - 40)$$

Significance level 1%, so require 0.5% in each tail

From the tables, the critical region for Z is Z > 2.5758 or Z < -2.5758

So the critical values for \overline{X} are given by

$$1.25(\overline{X} - 40) = \pm 2.5758$$

$$\Rightarrow \overline{X} = 37.93936$$
 and $\overline{X} = 42.06064$

So the critical region for \overline{X} is $\overline{X} < 37.9394$ or $\overline{X} > 42.0606$

b
$$P(Type I error) = significance level = 0.01$$

c Using the normal cumulative distribution function on a calculator:

P(Type II error) = P(37.9394
$$\leqslant \overline{X} \leqslant 42.0606 \mid \mu = 42$$
)
= P($\overline{X} \leqslant 42.0606 \mid \mu = 42$) - P($\overline{X} \leqslant 37.9394 \mid \mu = 42$)
= 0.5302 - 0.000 = 0.5302 (4 d.p.)

4 a
$$H_0: \mu = 15$$
 $H_1: \mu \neq 15$

Assume
$$H_0$$
, so that $\overline{X} \sim N\left(15, \frac{1}{25}\right)$

Standardise the \overline{X} variable

$$Z = \frac{\overline{X} - 15}{\frac{1}{5}} = 5(\overline{X} - 15)$$

Significance level 5%, so require 2.5% in each tail

From the tables, the critical region for Z is Z > 1.96 or Z < -1.96

So the critical values for \overline{X} are given by

$$5(\overline{X} - 15) = \pm 1.96$$

$$\Rightarrow \overline{X} = 14.608$$
 and $\overline{X} = 15.392$

So the critical region for \overline{X} is $\overline{X} < 14.608$ or $\overline{X} > 15.392$

b If the day's production is accepted although the mean diameter has changed, that is a Type II error. Using the normal cumulative distribution function on a calculator:

P(Type II error) = P(14.608
$$\leq \overline{X} \leq 15.392 \mid \mu = 15.6$$
)
= P($\overline{X} \leq 15.392 \mid \mu = 15.6$) - P($\overline{X} \leq 14.608 \mid \mu = 15.6$)
= 0.1492 - 0.000 = 0.1492 (4 d.p.)

5 a
$$H_0: \mu = 40$$
 $H_1: \mu > 40$

Assume
$$H_0$$
, so that $\overline{X} \sim N\left(40, \frac{8^2}{30}\right)$

Standardise the \bar{X} variable

$$Z = \frac{\overline{X} - 40}{\frac{8}{\sqrt{30}}} = \frac{\sqrt{30}(\overline{X} - 40)}{8}$$

Significance level 5%

From the tables, the 5% critical region for Z is Z > 1.6449

So the critical value for \overline{X} is given by

$$\frac{\sqrt{30}(\overline{X} - 40)}{8} = 1.6449$$
$$\Rightarrow \overline{X} = 42.4025$$

b Using the normal cumulative distribution function on a calculator:

P(Type II error) =
$$P(\overline{X} \le 42.4205 \mid \mu = 42) = 0.6086 \text{ (4 d.p.)}$$

c The significance level should be increased above 5% because that will decrease the value of Z and therefore X giving a lower probability than that obtained in b.