Quality of tests Mixed exercise 8

1 a $H_0: p = 0.35$ $H_1: p > 0.35$

Assume H_0 , so that $X \sim B(15, 0.35)$

Significance level 5%, so require c such that $P(X \ge c) < 0.05$

From the binomial cumulative distribution tables

$$P(X \ge 8) = 1 - P(X \le 7) = 1 - 0.8868 = 0.1132$$

$$P(X \ge 9) = 1 - P(X \le 8) = 1 - 0.9578 = 0.0422$$

 $P(X \ge 8) > 0.05$ and $P(X \ge 9) < 0.05$ so the critical value is 9

Hence the critical region is $X \ge 9$

- **b** Size = P(Type I error) = $P(X \ge 9 \mid p = 0.35) = 0.0422$
- c Power = P(H₀ is rejected | p = 0.5) = P($X \ge 9$ | p = 0.5) = 1 - P($X \le 8$ | p = 0.5) = 1 - 0.6964 = 0.3036
- **2 a** H_0 : $\lambda = 3.5$ H_1 : $\lambda < 3.5$

Assume H_0 , so that $X \sim Po(3.5)$

Significance level 5%, so require c such that $P(X \le c) < 0.05$

From the Poisson cumulative distribution tables

$$P(X \le 1) = 0.1359$$
 and $P(X = 0) = 0.0302$

 $P(X \le 1) > 0.05$ and P(X = 0) < 0.05 so the critical value is 0

Hence the critical region is X = 0

- **b** Size = P(Type I error) = $P(X = 0 | \lambda = 0.35) = 0.0302$
- **c** Power = P(H₀ is rejected $| \lambda = 3.0 \rangle$ = P(X = 0 $| \lambda = 3.0 \rangle$ = 0.0498
- **3 a** $H_0: \mu = 8$ $H_1: \mu \neq 8$

Assume
$$H_0$$
, so that $\overline{X} \sim N\left(8, \frac{9}{18}\right)$

Standardise the \overline{X} variable

$$Z = \frac{\overline{X} - 8}{\frac{3}{\sqrt{18}}} = \sqrt{2}(\overline{X} - 8)$$

Significance level 5%, so require 2.5% in each tail

From the tables, the critical region for Z is Z > 1.96 or Z < -1.96

So the critical values for \overline{X} are given by

$$\sqrt{2}(\bar{X} - 8) = \pm 1.96$$

$$\Rightarrow \overline{X} = 6.6141 \text{ and } \overline{X} = 9.3859$$
 (answers to 4 d.p.)

So the critical region for \overline{X} is $\overline{X} < 6.6141$ or $\overline{X} > 9.3859$ (answers to 4 d.p.)

b $P(Type\ I\ error) = significance\ level = 0.05$

3 c Using the normal cumulative distribution function on a calculator:

P(Type II error) = P(6.6141
$$\leq \overline{X} \leq 9.3859 \mid \mu = 7$$
)
= P($\overline{X} \leq 9.3859 \mid \mu = 7$) – P($\overline{X} \leq 6.6141 \mid \mu = 7$)
= 0.9996 – 0.2926 = 0.7070 (4 d.p.)

- **d** Power = 1 P(Type II error) = 1 0.7070 = 0.2930
- **4** a Let the random variable X denote the number of geese observed flying in a migratory pattern in a day, then the null hypothesis H_0 is $\lambda = 10$ and $X \sim Po(10)$

This hypothesis is only rejected if they observe 3 or fewer geese on the given day and then 2 or fewer geese on the next day; or if they observe 18 or more geese on the given day and then 19 or more geese on the next day.

So Size =
$$P(H_0 \text{ rejected} | H_0 \text{ true})$$

= $P(X \le 3) \times P(X \le 2) + P(X \ge 18) \times P(X \ge 19)$
= $0.010336... \times 0.002769... + 0.014278... \times 0.007187...$
= $0.0001312(7 \text{ d.p.})$

- **b** Power = $P(H_0 \text{ rejected } | \lambda = 5)$ = $P(X \le 3) \times P(X \le 2) + P(X \ge 18) \times P(X \ge 19)$ = $0.265\ 026... \times 0.124\ 652... + 0.000\ 005... \times 0.000\ 001...$ = $0.0330\ (4\ d.p.)$
- 5 **a** $H_0: \lambda = 4.5$ $H_1: \lambda > 4.5$ Critical region $X \ge 8$ Size = $P(X \ge 8 \mid \lambda = 4.5) = 1 - P(X \le 7 \mid \lambda = 4.5)$ = 1 - 0.9134 = 0.0866

b i Power =
$$P(X \ge 8 \mid X \sim Po(\lambda)) = 1 - P(X \le 7 \mid X \sim Po(\lambda))$$

 $\lambda = 4 \Rightarrow r = 1 - 0.9489 = 0.0511$
 $\lambda = 6 \Rightarrow s = 1 - 0.7440 = 0.2560$
 $\lambda = 9 \Rightarrow t = 1 - 0.3239 = 0.6761$

6 a $H_0: p = 0.45$ $H_1: p < 0.45$

Critical region $X \leq 3$

Size = $P(X \le 3 \mid X \sim B(15, 0.45)) = 0.0424$

b Power = $P(X \le 3 | X \sim B(15, p))$

$$p = 0.2 \Rightarrow s = 0.6482$$

$$p = 0.4 \Rightarrow t = 0.0905$$

6 c

- 7 **a** $H_0: \lambda = 2$ $H_1: \lambda > 2$ (Quality the same) (Quality is poorer)
 - b Assume H_0 , so that X Po(2) Require c such that $P(X \ge c) \approx 0.05$ From the Poisson cumulative distribution tables $P(X \ge 4) = 1 - P(X \le 3) = 1 - 0.8571 = 0.1429$ $P(X \ge 5) = 1 - P(X \le 4) = 1 - 0.9473 = 0.0527$ $P(X \ge 6) = 1 - P(X \le 5) = 1 - 0.9834 = 0.0166$ $P(X \ge 5)$ is closest to 0.05 so the critical value is 5 Hence the critical region is $X \ge 5$
 - c Power = P(H₀ is rejected | X Po(4)) = P(X \geqslant 5 | λ = 4) = 1 - P(X \leqslant 4 | λ = 4) = 1 - 0.6288 = 0.3712

- **8 a** $H_0: \lambda = 2$ $H_1: \lambda > 2$ (as good) (worse)
 - **b** Assume H_0 , so that $X \sim Po(2)$

Require c such that $P(X \ge c) \approx 0.05$

From the Poisson cumulative distribution tables

$$P(X \ge 5) = 1 - P(X \le 4) = 1 - 0.9473 = 0.0527$$

$$P(X \ge 6) = 1 - P(X \le 5) = 1 - 0.9834 = 0.0166$$

 $P(X \ge 5)$ is closest to 0.05 so the critical value is 5

Hence the critical region is $X \ge 5$

- c Power = P(H₀ is rejected | $X \sim Po(3)$) = P($X \ge 5 | \lambda = 3$) = 1 - P($X \le 4 | \lambda = 3$) = 1 - 0.8153 = 0.1847
- **d** Let the random variable *Y* denote the number of faulty garments produced by the machinist over the three days

$$H_0: \lambda = 6$$
 $H_1: \lambda > 6$

Assume H_0 , so that $Y \sim Po(6)$

Require c such that $P(Y \ge c) \approx 0.05$

From the Poisson cumulative distribution tables

$$P(Y \ge 10) = 1 - P(Y \le 9) = 1 - 0.9161 = 0.0839$$

$$P(Y \ge 11) = 1 - P(Y \le 10) = 1 - 0.9574 = 0.0426$$

 $P(Y \ge 11)$ is closest to 0.05 so the critical value is 11

Hence the critical region is $Y \ge 11$

e Power =
$$P(H_0 \text{ is rejected } | Y \sim Po(9))$$
 (3 days has mean = $3 \times 3 = 9$)
= $P(Y \ge 11 | \lambda = 9) = 1 - P(X \le 10 | \lambda = 9)$
= $1 - 0.7060 = 0.2940$

f Second test is more powerful as monitors the performance of the machinist over more days.

- 9 **a** $H_0: \mu = 6$ $H_1: \mu < 6$ Critical region is $X \le 2$ Size = P(Type I error) = P($X \le 2 \mid \mu = 6$) = 0.0620
 - **b** Power function = $P(X \le 2 \mid X \sim Po(\mu))$ = $P(X = 0 \mid X \sim Po(\mu)) + P(X = 1 \mid X \sim Po(\mu)) + P(X = 2 \mid X \sim Po(\mu))$ = $\frac{e^{-\mu} \mu^0}{0!} + \frac{e^{-\mu} \mu^1}{1!} + \frac{e^{-\mu} \mu^2}{2!}$ = $e^{-\mu} + e^{-\mu} \mu + \frac{1}{2} e^{-\mu} \mu^2$ = $e^{-\mu} \left(1 + \mu + \frac{\mu^2}{2} \right)$ = $\frac{1}{2} e^{-\mu} (2 + 2\mu + \mu^2)$

c
$$s = \frac{1}{2}e^{-2}(2+4+4) = 5e^{-2} = 0.6767 \text{ (4 d.p.)}$$

 $t = \frac{1}{2}e^{-5}(2+10+25) = 18.5e^{-5} = 0.1247 \text{ (4 d.p.)}$

2

3

5

- 9 e Reading from the graph, at the point that the graph intersects the line Power = 0.8, $\mu \approx 1.55$ so the power of this test is greater than 0.8 for $\mu < 1.55$
- **10 a** $H_0: p = 0.1$ $H_1: p > 0.1$ $X \sim B(10, p)$ Critical region is $X \ge 5$ Size = P(Type I error) = P($X \ge 5 \mid p = 0.1$) = $1 - P(X \le 4 \mid p = 0.1) = 1 - 0.9984 = 0.0016$
 - **b** $u = P(H_0 \text{ rejected} | p = 0.25)$ = $1 - P(X \le 4 | p = 0.25) = 1 - 0.9219 = 0.0781$ = 0.08 (2 d.p.)
 - c $H_0: p = 0.1$ $H_1: p > 0.1$ $Y \sim B(5, p)$ Critical region is $Y \geqslant 3$ Size = P(Type I error) = P($Y \geqslant 3 \mid p = 0.1$) = $1 - P(Y \le 2 \mid p = 0.1) = 1 - 0.9914 = 0.0086$
 - **d** $v = P(H_0 \text{ rejected} \mid p = 0.35)$ = $1 - P(Y \le 2 \mid p = 0.35) = 1 - 0.7648 = 0.2352$ = 0.24 (2 d.p.)

e

- **f** i 0.325
 - ii With p greater than this value, the technician's test is stronger than the supervisor's.
- **g** The test is more powerful for probabilities closer to zero (< 0.325), and it is quicker to check 5 items for defects than to test 10 items.
- 11 a $H_0: \lambda = 0.3$ $H_1: \lambda > 0.3$ $X \sim Po(10\lambda)$ Critical region is $X \ge 6$ Size = P(Type I error) = P($X \ge 6 \mid X \sim Po(3)$) = 1 - P($X \le 5 \mid X \sim Po(3)$) = 1 - 0.9161 = 0.0839

11 b
$$a = P(H_0 \text{ rejected} | X \sim Po(5))$$

= $1 - P(X \le 5 | X \sim Po(5)) = 1 - 0.6160 = 0.3840$
= $0.38 (2 \text{ d.p.})$

c
$$H_0: \lambda = 0.3$$
 $H_1: \lambda > 0.3$

Assume H_0 , so that $X \sim Po(15 \times 0.3)$, i.e. $X \sim Po(4.5)$

Significance level 5%, so require c such that $P(X \ge c) < 0.05$

From the Poisson cumulative distribution tables

$$P(X \ge 8) = 1 - P(X \le 7) = 1 - 0.9134 = 0.0866$$

$$P(X \ge 9) = 1 - P(X \le 8) = 1 - 0.9597 = 0.0403$$

 $P(X \ge 8) > 0.05$ and $P(X \ge 9) < 0.05$ so the critical value is 9

Hence the critical region is $X \ge 9$

d Size = P(Type I error) =
$$P(X \ge 9 \mid X \sim Po(4.5))$$

= $1 - P(X \le 8 \mid X \sim Po(4.5)) = 1 - 0.9597 = 0.0403$

e
$$b = P(H_0 \text{ rejected} | X \sim Po(13.5))$$

= $1 - P(X \le 8 | X \sim Po(13.5)) = 1 - 0.0790 = 0.9210$
= $0.92 (2 \text{ d.p.})$

g i 0.63

ii With λ greater than this value, the manager's test is more powerful.

Challenge

a Let the random variable X be the number of times a pair of ones appears in 12 rolls of the dice, then $X \sim B(15, p)$

$$H_0: \lambda = \frac{1}{36}$$
 $H_1: \lambda > \frac{1}{36}$ $X \sim B(12, \frac{1}{36})$

Critical region $X \ge 2$

Size =
$$P(X \ge 2 \mid X \sim B(12, \frac{1}{36})) = 1 - P(X \le 1 \mid X \sim B(12, \frac{1}{36}))$$

= $1 - 0.9577 = 0.0423 \text{ (4 d.p.)}$

- **b** Power = $P(X \ge 2 \mid X \sim B(12, p)) = 1 P(X \le 1 \mid X \sim B(12, p))$ = $1 - P(X = 0 \mid X \sim B(12, p)) - P(X = 1 \mid X \sim B(12, p))$ = $1 - (1 - p)^{12} - 12 p(1 - p)^{11}$
- c Size = P(Type I error) = $P(X \ge 4 \mid X \sim B(6, \frac{1}{6})) + P(X \le 3 \mid X \sim B(6, \frac{1}{6})) P(X \ge 4 \mid X \sim B(6, \frac{1}{6}))$ = 0.008702...+ (0.991298...×0.008702...) = 0.0173 (4 d.p.)
- **d** The probability p of a double 1 in this situation is $q \times \frac{1}{6}$

Substituting for $p = q \times \frac{1}{6}$ in the equation in part **b** gives

Power =
$$1 - \left(1 - \frac{q}{6}\right)^{12} - 12 \times \frac{q}{6} \left(1 - \frac{q}{6}\right)^{11}$$

= $1 - \left(1 - \frac{q}{6}\right)^{12} - 2q\left(1 - \frac{q}{6}\right)^{11}$

e Power =
$$P(X \ge 4 \mid X \sim B(6, \frac{1}{6})) + P(X \le 3 \mid X \sim B(6, \frac{1}{6})) P(X \ge 4 \mid X \sim B(6, q))$$

= $0.0087 + 0.9913 \times (15q^4(1-q)^2 + 6q^5(1-q) + q^6)$
= $0.0087 + 0.9913 \times (15q^4 - 30q^5 + 15q^6 + 6q^5 - 6q^6 + q^6)$
= $0.0087 + 0.9913 \times (15q^4 - 24q^5 + 10q^6)$
= $0.0087 + 14.8695q^4 - 23.7912q^5 + 9.913q^6$

Challenge

g As the power of Jane's test is greater than that of Emma's when 0.1 < q < 0.4, recommend that Jane's test is used.