1

Linear regression 1C

1 This table sets out the residuals for each data point:

x	у	y = -3.633 + 14.33x	ε
1.1	12.2	12.13	0.07
1.3	14.5	14.996	-0.496
1.4	16.9	16.429	0.471
1.7	p	20.728	p - 20.728
1.9	23.5	23.594	-0.094

$$\sum \varepsilon = 0 \Rightarrow 0.07 - 0.496 + 0.471 + (p - 20.728) - 0.094 = 0$$
$$\Rightarrow p = 20.777 = 20.8 \text{ (3 s.f.)}$$

2 a This table sets out the residuals for each data point:

x	m	m = 114.3 - 1.655x	ε
2	110	110.99	-0.99
5	105	106.025	-1.025
8	103	101.06	1.94
9	101	99.405	1.595
11	96	96.095	-0.095
15	88	89.475	-1.475

b

c A linear model is suitable since the residuals appear to be randomly scattered about zero.

3 a This table sets out the residuals for each data point:

t	p	p = 51.04 + 5.308t	ε
5.1	79	78.121	0.8892
5.7	81	81.307	-0.2956
6.3	85	84.493	0.5196
6.4	86	85.024	0.9888
7.1	89	88.741	0.2732
7.2	84	89.272	-5.2576
8.0	95	93.52	1.496
8.3	96	95.113	0.9036
8.7	98	97.237	0.7804
9.1	99	99.361	-0.3428

The outlier is the point (7.2, 84) since the size of the residual is far greater than for the other points.

b There is no correct answer here.

Possible reason for including this outlier in the data: Sarah might have just had a bad day and it is a legitimate percentage.

Possible answer for excluding this outlier from the data: the data point could have been incorrectly recorded.

c Use of calculator with the remaining data points gives a *p* on *t* regression line equation of:

$$p = 51.592... + 5.3116...t$$

 $\Rightarrow p = 51.6 + 53.1t$ (parameters to 3 s.f.)

d
$$p = 51.592... + 5.3116 \times 7.8 = 93.022... = 93.0\%$$
 (3 s.f.)

4 a This table sets out the residuals for each data point:

x	у	y = 15.7 - 2.02x	ε
1.2	13.1	13.276	-0.176
1.7	12.5	12.266	0.234
2.4	10.9	10.852	0.048
3.1	9.4	9.438	-0.038
3.8	7.9	8.024	-0.124
4.2	а	7.216	a - 7.216
5.1	5.8	5.398	0.402

$$\sum \varepsilon = 0 \Rightarrow -0.176 + 0.234 + 0.478 - 0.038 - 0.124 + (a - 7.216) + 0.402 = 0$$
$$\Rightarrow a = 6.87$$

- 4 b A linear model is suitable since the residuals are randomly distributed about zero.
- 5 a The residual sum of squares measures the reasonableness of linear fit.

b
$$S_{aa} = \sum a^2 - \frac{\left(\sum a\right)^2}{n} = 7720 - \frac{236^2}{8} = 758$$

$$S_{tt} = \sum t^2 - \frac{\left(\sum t\right)^2}{n} = 4821 - \frac{193^2}{8} = 164.875$$

$$S_{at} = \sum at - \frac{\sum a\sum t}{n} = 6046 - \frac{236 \times 193}{8} = 352.5$$

$$RSS = S_{tt} - \frac{\left(S_{at}\right)^2}{S_{ct}} = 164.875 - \frac{352.5^2}{758} = 0.949 \text{ (3 s.f.)}$$

c The obstacle course data is more likely to have a linear fit since the RSS is lower.

6 a RSS =
$$S_{dd} - \frac{\left(S_{hd}\right)^2}{S_{hh}} = 1.949 - \frac{23.13^2}{289.4} = 0.100 \text{ (3 s.f.)}$$

b The sample from October is more likely to have a linear fit since the RSS is lower.

7 **a**
$$S_{xx} = \sum x^2 - \frac{\left(\sum x\right)^2}{n} = 33.56 - \frac{12.8^2}{6} = 6.25333...$$

$$S_{xy} = \sum xy - \frac{\sum x\sum y}{n} = 120.03 - \frac{12.8 \times 65.4}{6} = -19.49$$

$$b = \frac{S_{xy}}{S_{xx}} = \frac{-19.49}{6.25333} = -3.1167... = -3.117 \text{ (4 s.f.)}$$

$$\overline{x} = \frac{\sum x}{n} = \frac{12.8}{6} = \frac{32}{15} \qquad \overline{y} = \frac{\sum y}{n} = \frac{65.4}{6} = 10.9$$

$$a = \overline{y} - b\overline{x} = 10.9 + 6.25333... \times \frac{32}{15} = 17.5490... = 17.55 \text{ (4 s.f.)}$$

Hence the equation of the regression line of y on x is: y = 17.55 - 3.117x

b The value of a (17.55) means that the price of a brand new car before depreciation is £17 550).

$$y = 17.5490... - 3.1167 \times 2 = 11.3156$$

So an estimate for the value of a 2-year old car is £11316 (to the nearest pound).

7 d This table sets out the residuals for each data point:

x	у	y = 17.55 - 3.117x	ε
0.7	15.4	15.3681	0.0319
1.3	13.5	13.4979	0.0021
1.8	12.1	11.9394	0.1606
2.3	10.1	10.3809	-0.2809
2.9	8.5	8.5107	-0.0107
3.8	5.8	5.7054	0.0946

e A linear model is suitable since the residuals are close to zero and scattered about zero.

$$\mathbf{f} \quad S_{yy} = \sum y^2 - \frac{\left(\sum y\right)^2}{n} = 773.72 - \frac{65.4^2}{6} = 60.86$$

$$RSS = S_{yy} - \frac{\left(S_{xy}\right)^2}{S_{xx}} = 60.86 - \frac{-19.49^2}{6.25333} = 0.1148 \text{ (4 s.f.)}$$

g The first sample is more likely to have a linear fit since the RSS is lower.

Challenge

Using equation of regression line with \overline{y} and \overline{x} :

$$\frac{9+p+q}{3} = 2+4\left(\frac{1+5+7}{3}\right) \Rightarrow p+q = 49$$
 (1)

Using
$$b = \frac{S_{xy}}{S_{xx}} = \frac{\sum xy - \frac{\sum x\sum y}{n}}{\sum x^2 - \frac{\left(\sum x\right)^2}{n}}$$
:

$$4 = \frac{9 + 5p + 7q - \frac{13(9 + p + q)}{3}}{75 - \frac{13^2}{3}} = \frac{27 + 15p + 21q - 117 - 13p - 13q}{56}$$

$$\Rightarrow p + 4q = 157 \tag{2}$$

Subtracting equation (1) from equation (2) gives:

$$3q = 108 \Rightarrow q = 36 \Rightarrow p = 13$$