Further hypothesis tests 6B

1 a
$$\overline{x} = 16.605$$
 $s^2 = \frac{5583.63 - 20(16.605)^2}{19} = 3.637...$

b
$$H_0: \sigma^2 = 1.5$$
 $H_1: \sigma^2 > 1.5$

Critical region > 30.144

Test statistic =
$$\frac{(n-1)s^2}{\sigma^2} = \frac{19 \times 3.637..}{1.5} = 46.073$$

The test statistic is in the critical region, so reject H₀

There is evidence to suggest $\sigma^2 > 1.5$

2
$$\bar{x} = 0.337$$
 $s^2 = 0.0028677...$

$$H_0: \sigma^2 = 0.09$$
 $H_1: \sigma^2 < 0.09$

Critical region ≤ 2.700

Test statistic =
$$\frac{(n-1)s^2}{\sigma^2} = \frac{9 \times 0.0028677...}{0.09} = 0.287$$

The test statistic is in the critical region, so reject H₀

There is evidence to suggest that variance is less than 0.09.

3
$$H_0: \sigma^2 = 4.1$$
 $H_1: \sigma^2 \neq 4.1$
 $\overline{x} = 5.74$ $s^2 = 6.940...$

Critical region ≤ 2.7 and ≥ 19.023

Test statistic =
$$\frac{(n-1)s^2}{\sigma^2} = \frac{9 \times 6.940...}{4.1} = 15.235$$

The test statistic is not in the critical region, so accept . . .

There is no evidence the variance does not equal 4.1.

4
$$H_0: \sigma^2 = 1.12^2$$
 $H_1: \sigma^2 \neq 1.12^2$

Critical region ≤ 8.907 and ≥ 32.852

Test statistic =
$$\frac{(n-1)s^2}{\sigma^2} = \frac{19 \times 1.15}{1.12^2} = 17.419$$

The test statistic is not in the critical region, so accept H_0

There is no evidence the variance does not equal 1.12.

5 a An unbiased estimation of μ is calculated as:

$$\overline{x} = \frac{\sum x}{n}$$

$$= \frac{149.941}{15}$$

$$= 9.996...$$

An unbiased estimation of σ^2 is calculated as:

$$s^{2} = \frac{1}{n-1} \left(\sum x^{2} - n\overline{x}^{2} \right)$$

$$= \frac{1}{15-1} \left(1498.83 - 15 \times 9.996...^{2} \right)$$

$$= \frac{1}{14} \left(0.00976... \right)$$

$$= 0.0006977....$$

b Our hypotheses are:

$$H_0: \sigma^2 = 0.04$$

and

$$H_1: \sigma^2 \neq 0.04$$

The significance level is 5% (2.5% at each tail) with v = 14 degrees of freedom. From the table, we find critical values of:

$$\chi_{14}^2 (0.975) = 5.629$$

and

$$\chi_{14}^2(0.025) = 26.119$$

The critical regions are $\frac{(n-1)s^2}{\sigma^2} \geqslant 26.119$ and $\frac{(n-1)s^2}{\sigma^2} \leqslant 5.629$.

$$s^2 = 0.0006977...$$
, and $\sigma^2 = 0.04$.

So our test statistic is:

$$\frac{(n-1)s^2}{\sigma^2} = \frac{(15-1)0.000697...}{0.04} = 0.244$$

0.244 < 5.629 and so 0.244 is in the critical region so we have sufficient evidence to reject H_0 and conclude that there has been a change in variance ($\sigma^2 \neq 0.04$).

6 a
$$s^2 = 0.06125$$

b
$$H_0: \sigma^2 = 0.19$$
 $H_1: \sigma^2 \neq 0.19$

Critical region ≤ 2.167 and ≥ 14.067

Test statistic =
$$\frac{(n-1)s^2}{\sigma^2} = \frac{7 \times 0.06125}{0.19} = 2.256$$

The test statistic is not in the critical region, so we do not reject H_0 .

There is no evidence that σ^2 does not equal 0.19.

7 **a**
$$H_0: \sigma^2 = 110.25$$
 $H_1: \sigma^2 < 110.25$ $10.5^2 = 110.25$

Critical region ≤10.117

Test statistic =
$$\frac{(n-1)s^2}{\sigma^2} = \frac{19 \times 8.5^2}{110.25} = 12.451$$

The test statistic is not in the critical region, so we do not reject H_0 .

There is no evidence that the variance has reduced.

b Take a larger sample before committing to the new component.

8 a An unbiased estimate of
$$\mu$$
 is calculated as $\bar{x} = \frac{\sum x}{n} = \frac{32.12}{10} = 3.212$.

In order to calculate the standard error, we first calculate an unbiased estimate of the standard deviation.

$$s^{2} = \frac{1}{n-1} \left(\sum x^{2} - n\overline{x}^{2} \right)$$
$$= \frac{1}{10-1} \left(103.8592 - 10 \times 3.212^{2} \right)$$
$$= 0.07664.$$

Thus, the unbiased estimate of standard deviation is s = 0.2768.

Now we calculate the standard error to be:

$$\frac{s}{\sqrt{n}} = \frac{0.2768}{\sqrt{10}} = 0.0875$$
 (3 s.f.)

8 b Our hypotheses are:

$$H_0: \sigma = 0.25$$

and

$$H_1: \sigma \neq 0.25$$

The significance level is 5% (2.5% at each tail) with v = 9 degrees of freedom. From the table, we find critical values of:

$$\chi_9^2 (0.975) = 2.700$$

and

$$\chi_9^2 (0.025) = 19.023$$

The critical regions are $\frac{(n-1)s^2}{\sigma^2} \geqslant 19.023$ and $\frac{(n-1)s^2}{\sigma^2} \leqslant 2.700$.

$$s^2 = 0.07664$$
 and $\sigma^2 = 0.25^2$.

So our test statistic is:

$$\frac{(n-1)s^2}{\sigma^2} = \frac{(10-1)0.07664}{0.25^2} = 11.03616$$

2.700 < 11.03616 < 19.023 and so 11.03616 is not in the critical region so we do not have sufficient evidence to reject H_0 . We therefore conclude that there has been no change in standard deviation.