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Vectors Mixed Exercise 1 

1 a 

  

b× c =

i j k

1 −2 2

3 2 −4

= 4i+10j+8k  

 

 b Using the result for  b× c  from part a gives 

  
  a.(b× c) = (2i + 3j).(4i +10j+8k) = 8+ 30 = 38 

 

 c Area of triangle OBC 
  
=

1

2
| b || c | sinθ =

1

2
| b× c | 

              

  

=
1

2
4i +10j+8k ==

1

2
42 +102 + 82

=
1

2
16 +100 + 64 =

180

2

=
3 20

2
=

3 4 5

2
= 3 5

 

 

 d Using the result for 
  a.(b × c)  from part b gives 

  Volume of tetrahedron OABC 
  
=

1

6
a.(b× c) =

38

6
=

19

3
 

 

2 a ( 4 3 ) ( 3 ) 1 4 3 13 4

1 3 1

OB OC× = − − × − + − = − − = + −

− −

i j k

i j k i j k i j k
���� ����

 

 

 b Volume in design units  

  ( )1 1 1 27 9
(2 3 ) (13 4 ) 26 4 3

6 6 6 6 2
OA OB OC× = + + + − = + − = =. i j k . i j k
���� ���� ����

 

  One cubic design unit  = 4× 4× 4 = 64 cm3
  

  So volume of prototype package 
 
=

9

2
× 64 = 288 cm

3
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3 Volume of the parallelepiped is ( )EA EC EF×.
���� ���� ����

 

 Volume of the tetrahedron is ( )1

6
EA EC EM×.
���� ���� �����

 

 

( )

3 2

3 2 4 2 2 4

3 2 2 5 4

82 2 2
3 3 3 3

EA

EC EA AC

EF EA AF

EM EF

= − + −

= + = − + − + + − = + −

= + = − + − + − + = − − −

= = − − −

i j k

i j k i j k i j k

i j k i j k i j k

i j k

����

���� ���� ����

���� ���� ����

����� ����

  

 So volume of parallelepiped = 

 

−3 −1 −2

1 2 −4

−1 −4 −1

= −3(−18)− (−1)(−5)+ (−2)(−2) = 53 

 And volume of tetrahedron = 

 

1

6

−3 −1 −2

1 2 −4

− 2
3

− 8
3

− 2
3

=
1

6
−3 −

36

3







− (−1) −

10

3







+ (−2) −

4

3













 

       
 
=

108−10 +8

18
=

106

18
=

53

9
 

 Therefore volume of the tetrahedron is 
1

9
 of volume of the parallelepiped. 

 Alternatively, prove the general result as follows: 

    

( )

( ) ( )

1 1 2
Volume of tetrahedron =

6 6 3

1 2 1

6 3 9

1
 volume of parallelepiped.

9

. .

. .

EA EC EM EA EC EF

EA EC EF EA EC EF

 × = × 
 

= × × = ×

=

���� ���� ����� ���� ���� ����

���� ���� ���� ���� ���� ����
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4 Let the position vector of point C relative to the origin be x y z= + +c i j k  

 Then the volume of the tetrahedron is given by 
  

1

6
| c.(a ×b) | 

 

  

a × b =

i j k

5 2 0

2 −1 −3

= −6i+15j− 9k  

 This gives  

 
   

1

6
| c.(a × b) | =

1

6
| (xi + yj+ zk).(−6i +15j− 9k) | =

1

6
|−6x +15y − 9z | =

1

2
|−2x +5y − 3z |  

 So if the volume is 5 m3
, then the locus of admissible points is 

 
  

1

2
|−2x +5y − 3z | = 5⇒ |−2x +5y − 3z | = 10  

 So Cartesian equations satisfying this equation are 

 
  

−2x +5y − 3z = 10⇒ 2x −5y + 3x +10 = 0

and  2x −5y + 3z = 10⇒ 2x −5y + 3x −10 = 0
 

 

5 a Equation of 
  
L

1
 is 

   r = 3i − 3j+ 2k + s(j+ 2k )  

  When 
   s = 2, r = 3i − j+ 2k , so P lies on 1L  

  Equation of 
  
L

2
 is 

   r = 8i + 3j+ t(5i+ 4j− 2k)  

  When 
   t = −1, r = 3i − j+ 2k, so P lies on 2L  

 

 b 

  

b
1
×b

2
=

i j k

0 1 2

5 4 −2

= −10i +10j− 5k  

 

 c The normal to the plane is in direction of 1 2
.×b b  So 2 2− + −i j k  is a normal to the plane.  

  Using 
  r.n = a.n, with n = 3i + j− k  and a = 3i − 3j− 2k (note a can be the position vector of any 

point on the plane), this gives a vector equation of the plane as: 

  
  r.(−2i + 2j− k) = (3i − 3j− 2k).(−2i + 2j− k) =−6− 6+ 2 = −10  

  
  So 2x − 2y + z = 10  is a Cartesian equation of the plane. 

 

 d 1 1
(3 2 ) (3 3 2 ) 2 4 2A P = − + − − − = + =i j k i j k j k b

����

 

  2 2
(3 2 ) (8 3 ) ( 5 4 2 )A P = − + − + = − − + = −i j k i j i j k b

�����

 

  

1 2 1 2 1 2

1 2

2 2 2

1 1
Area of triangle 2

2 2

10 10 5              from part 

( 10) (10) ( 5)

225 15

PA A A P A P= × = ×−

= × = − + −

= − + + −

= =

b b

b b i j k b

���� �����
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6 a ( 3 5 ) ( 2 ) 2 3AB = − + − − + = − +i j k j k i j k
����

 

  ( 2 ) (2 2 7 ) 2 3 5CD = + − − + = − + −j k i j k i j k
����

  

  1 2 3

2 3 5

AB CD= × = − = − −

− −

i j k

p i j k
���� ����

 

 

 b (2 2 7 ) ( 2 ) 2 5AC = − + − − + = − +i j k j k i j k
����

 

  (2 5 ) ( ) 2 1 5 2AC = − + − − = + − = −.p i j k . i j k
����

 

 

 c The line containing AB has equation 2 AB= − + +r j k
����

λ   

  The line containing CD has equation 2 5 CD= − + +r i j k
����

µ  

  So the shortest distance between the lines containing AB and the line containing CD is  

  
2 2 2

( 2 ) (2 5 ) 2 2 2 3

| | 3| | 31 ( 1) ( 1)

AB CD AC

AB CD

− + − − + ×
= = = =

× + − + −

j k i j k . .p

p

���� ���� ����

���� ����  

 

7 a 4 2OM= = − + −b i j k
�����

 

  Let ,a i j kx y z= + + then as a represents a point on the line 

  

   

xi + yj+ zk × (−4i+ j− 2k) = 5i−10k

⇒

i j k

x y z

−4 1 −2

= 5i −10k

⇒ (−2y − z)i + (2x − 4z)j+ (x + 4y)k = 5i −10k

 

  Comparing coefficients gives 

  

 

2 5       

2 4 0        

4 10         

y z

x z

x y

− − =

− =

+ = −

(1)

(2)

(3)

 

  Any value chosen for x will give a point on the line. Let 2x =  say 

  Then from equation (3):    4y = −12 ⇒ y = −3 

  And from equation (2):     4− 4z = 0 ⇒ z = 1 

  
 Therefore (2,−3, 1) is a point on the line. 

  So the equation of line may be written as 
   r = 2i − 3j+ k + t (−4ι + j− 2k)  

 

 b It has already been shown in part a that (2, –3, 1) lies on the line l with vector equation 

5 10 ,r i kOM× = −
�����

so 5 10ON OM× = −i k
���� �����

 

  
2 2

1 1 1
Area of triangle 5 10

2 2 2

1 125 5 5
5 ( 10) 5.59 (3 s.f.)

2 2 2

i kOMN OM ON ON OM= × = × = −

= + − = = =

����� ���� ���� �����
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8 a (3 4 ) ( 3 3 ) 2 2AB = + + − + + = − +i j k i j k i j k
����

 

  (2 4 ) ( 3 3 ) 2AC = + + − + + = + −i j k i j k i j k
����

 

  A vector normal to the plane ABC is the direction .AB AC×
���� ����

 

  2 2 1 3 5 4

1 1 2

AB AC× = − = + +

−

i j k

i j k
���� ����

 

  A unit vector normal to the plane is 

  

1

32 +52 + 42
(3i +5j+ 4k) =

1

50
(3i +5j+ 4k)  

 

 b Using 
  r.n = a.n, with n = 3i + 5j+ 4k  and a = i + 3j+ 3k  (note a can be the position vector of any 

point on the plane), this gives a vector equation of the plane as: 

  
  r.(3i +5j+ 4k) = (i + 3j+ 3k).(3i +5j+ 4k) = 3+15+12 = 30  

  So   3x +5y + 4z= 30 is a Cartesian equation of the plane. 

 

 c The perpendicular distance from the origin to a plane with equation   r.n = k  where n is a unit 

vector perpendicular to the plane is k. 

  So from part b, the vector equation of the plane is 

  

r.
1

50
(3i +5j+ 4k) =

30

50
 

  So the perpendicular distance from the origin to the plane 
30 30 50

3 2
5050

= = =  

 

9 a Two non-parallel lines in the plane with vector equation ( )s t= + + −r i j i k  are 
  j and i − k  

  

  

So a normal to the plane is j× i − k =

i j k

0 1 0

1 0 −1

= −i − k  

  As 
  i + k  is parallel to − i − k, it must be is perpendicular to the plane. 

 

 b From part b, 
1

( )
2

= +n i k  is a unit vector perpendicular to the plane. 

  Using   r.n = a.n, with a = i , this gives a vector equation of the plane as 

  
1 1 1

( ) ( ) ( )
2 2 2

+ = + =r. i k i . i k  

  So as 
1

( )
2

+i k  is a unit vector,  

  the perpendicular distance from the origin to the plane 
1 2

= 0.707 (3 s.f.)
22

= =  

 

 c As 
1 1

( )
2 2

+ =r. i k  is a vector equation of the plane 

  A Cartesian equation of the plane is 

  

1

2
(x + z) =

1

2
, which simplifies to x + z = 1 
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10 a (5 2 ) ( ) 4 3AB OB OA= − = − + − + + = −i j k i j k i j
���� ���� ����

 

  (3 2 6 ) ( ) 2 5AC OC OA= − = + + − + + = + +i j k i j k i j k
���� ���� ����

 

  A perpendicular vector to the plane is in direction AB AC×
���� ����

 

  4 3 0 15 20 10

2 1 5

AB AC× = − = − − +

i j k

i j k
���� ����

 

 

 b The equation of the plane containing A, B and C is 

  Using 
  r.n = a.n, with a = i + j+k , this gives a vector equation of the plane as 

  
  r.(−15i− 20j+10k) = (i + j+k).(−15i − 20j+10k) = −15− 20+10 = −25 

  So a Cartesian equation of the plane is   −15x − 20 y +10z = −25, which simplifies to 3x + 4 y − 2z = 5 

 

 c ( 5 6 ) ( j ) 4 5AD OD OA= − = + + − + + = +i j k i k j k
���� ���� ����

 

  

1
Volume of tetrahedron ( )

6

1 1 30
(4 5 ) ( 15 20 10 ) ( 80 50) 5

6 6 6

ABCD AD AB AC= ×

= + − − + = − + = =

.

j k . i j k

���� ���� ����

 

 

11 a (2 3 ) (3 5 ) 2AC OC OA= − = − − − − = − + +i j i j k i j k
���� ���� ����

 

  

(2 3 ) ( 5 7 ) 3 8 7

1 2 1 6 4 2

3 8 7

BC OC OB

AC BC

= − = − − − + + = − −

× = − = − − +

− −

i j i j k i j k

i j k

i j k

���� ���� ����

���� ����  

 

 b  is a normal to the plane  and 3 5  is a point on the planei j kAB AC ∏× − −
���� ����

  

  So an equation of the plane is 

   
  r.(−6i− 4j+ 2k) = (3i − 5j− k).(−6i − 4j+ 2k) = −18+ 20− 2 = 0  

  This simplifies to   r.(3i + 2j− k) = 0  

 

 c As 3i + 2j – k is a normal to the plane, the perpendicular from the point (2, 3, –2) to the plane has 

the equation 
   

  r = 2i + 3j− 2k + λ(3i + 2j−k)  

 

  Using the result from part b, this meets the plane when  

  

  

(2+ 3λ)i + (3+ 2λ)j+ (−2− λ)k( ).(3i + 2j−k) = 0

⇒3(2+ 3λ)+ 2(3+ 2λ)−1(−2− λ) = 0

⇒14λ +14 = 0

⇒ λ = −1

 

 

  Substitute  λ = −1 into the equation of the line gives 
   

  r = 2i + 3j− 2k + (−1)(3i + 2j−k) = −i + j−k  

  So the perpendicular from (2, 3, –2) meets the plane at (–1, 1, –1) 
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12 a 

  

p× q = (3i − j+ 2k) × (2i + j− k)=

i j k

3 −1 2

2 1 −1

= −i+ 7j+ 5k  

 

 b  is a normal to the plane and the point with position vector 3 2  is on the plane,p q i j k× − + so an 

equation of the plane is 

  

   

r.(−i + 7j+5k) = (3i − j+ 2k).(−i + 7j+5k) = −3− 7 +10 = 0

So a Cartesian equation for the plane is −x + 7 y +5z = 0
 

 

 c 
  (r −p)× q = 0  is one form of the vector equation of a line passing through the point with position 

vector p and parallel to the vector q. So the equation can also be written as 

  
  r = pq+ λq, i.e. r = 3i− j+ 2k + λ(2i + j−k)  

  This meets the plane 
  r.(i + j+ k) = 2  when  

  

(3+ 2λ)+ (−1+ λ)+ (2− λ)( ).(i+ j+k) = 2

⇒ (3+ 2λ)+ (−1+ λ)+ (2− λ) = 2⇒ 2λ + 4 = 2⇒λ = −1
 

  Substitute  λ = −1 into the equation of the line gives 
   

  r = 3i − j+ 2k + (−1)(2i + j−k) = i − 2j+ 3k  

  So the coordinates of point T are (1, –2, 3)  

 

13 a Let the respective normal to each plane be 1 2
 and  ,  thenn n   

  
  
n

1
= 2i + 2j− k   and  

  
n

2
= i − 2j 

  Let the acute angle between the two planes be θ , then θ  is also the angle between the respective 

normal to each plane, so 

  

  

cosθ =
n

1
.n

2

| n
1
| | n

2
|
=

| 2×1− 2× 2 |

2
2 + 2

2 + (−1)
2

1
2 + (−2)

2
=

2

3 5
=

2 5

15

⇒θ = 72.7° = 73° (to the nearest degree)

 

  



 

© Pearson Education Ltd 2018. Copying permitted for purchasing institution only. This material is not copyright free. 
8 

13 b The direction of the line of intersection is perpendicular to the normal of each plane.  

  Hence the direction is 

  

i j k

2 2 −1

1 −2 0

= −2i − j− 6k  

  Any scalar multiple of this vector is also in the direction of the line of intersection, so simplify by 

multiplying by –1 to get 
  2i+ j+ 6k  

 

  Find a point on the line by setting y = 0 and solving the Cartesian equations of the two planes. 

  

2 2 9    

2 7            

Substituting for  in equation  gives: 7

Substituting for  and  in equation  gives: 2 7 9 5

So 7 5  is the position vector of a point on the line of int

x y z

x y

y x

x y z z

+ − =

− =

=

× − = ⇒ =

+

(1)

(2)

(2)

(1)

i k ersection

 

  A line passing through a point with position vector a and parallel to vector b has the vector 

equation ,r b a b× = × so an equation of the line of intersection is 

  

  

r × (2i + j+ 6k) = (7i +5k)× (2i + j+ 6k) =

i j k

7 0 5

2 1 6

= −5i− 32j+ 7k

So the equation is r × (2i + j+ 6k) = −5i − 32j+ 7k

  

 

14 a The normal to the plane Π  is in the direction  

  

  

(4i + j+ 2k)× (3i+ 2j− k) =

i j k

4 1 2

3 2 −1

= −5i +10j+ 5k  

  The line L is in the direction 
  (2i+ 3j− 4k)  

  Finding the scalar product of the direction of the normal to the plane and the direction of the line 

  
  (−5i+10j+5k).(2i + 3j− 4k) = −10+ 30− 20 = 0  

  This means that the line L is perpendicular to the normal to the plane, so the line L is parallel to the 

plane Π. 
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14 b The line L passes through point (2, 1, –3) 

The perpendicular to plane Π  through the point (2, 1, –3) has a vector equation 

  2 3 ( 5 10 5 )= + − + λ − + +r i j k i j k  

  As the normal to the plane is 
  −5i +10j+ 5k  and 

  i + 3j+ 4k  is the position vector of a point on the 

plane, the equation of the plane may be written as 

  
  r.(−5i+10j+5k) = (i + 3j+ 4k).(−5i +10j+5k)= −5+ 30 + 20 = 45 

  So the perpendicular to the plane Π  from (2, 1, –3) meets the plane when 

  

  

(2− 5λ)i + (1+10λ)j+ (−3+5λ)k( ).(−5+10j+5k) = 45

⇒−10+ 25λ +10+100λ −15+ 25λ = 45

⇒150λ = 60⇒λ =
2

5

 

  Substituting 
2

5
λ =  into the equation of the perpendicular to plane Π  through the point (2, 1, –3) 

gives 
  r = 5j−k , so the perpendicular to Π  from (2, 1, –3) meets the plane at (0, 5, –1). As the line 

is parallel to the plane, the shortest distance from L to Π  is the distance between these points, i.e.  

   2 2 2
(2 0) (1 5) ( 3 ( 1)) 4 16 4 24 2 6 = 4.90 (3 s.f.)− + − + − − − = + + = =  

  Alternatively, note that as L is parallel to the plane Π, the shortest distance between L and the 

plane will also be the shortest distance between L and any line L1 on the plane that is non-parallel 

with L. These two lines are skew. 

 

  Write the equation of L as 
   r = a + tb, where a = 2i + j− 3k  and b = 2i + 3j− 4k   

  And L1 as 
   r = c + sd, where c = i + 3j+ 4k, a point on the plane, and d = 4i + j+ 2k, a direction on 

the plane 

  

  

b× d =

i j k

2 3 −4

4 1 2

= 10i − 20j−10k  

  Using the result for the shortest distance between two skew lines 

  
2 2 2

( ) ( ) ( 2 7 ).(10 20 10 )
Shortest distance

| ( ) | 10 ( 20) ( 10)

10 40 70 120 12
2 6 4.90 (3 s.f.)

600 10 6 6

a c b d i j k i j k

b d

− . × − − − −
= =

× + − + −

+ +
= = = = =

  

 

15 a A normal to the plane is 
  2i + j+ 3k  so the line l is parallel to this vector and it passes through the 

point with position vector 2 ,i j k+ + hence a vector equation of the line is 

   2 (2 3 )= + + + λ + +r i j k i j k  

 

 b From the vector equation, the coordinates of a point on l are 
 (1+ 2λ, 2+ λ, 1+ 3λ)   

  So the line l meets the plane Π  when 

  

 

2(1+ 2λ)+ (2+ λ)+ 3(1+ 3λ) = 21

⇒14λ + 7 = 21⇒λ =1
 

Substitute 1λ =  into the equation of the line l gives 3 3 4r i j k= + +  

  So M has coordinates (3, 3, 4) 
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15 c  

 

 d Let θ  be the acute angle between the vectors   

  Then, by simple geometry, the distance d from P to the line OM is   

  From the definition of the vector product    

   

 

 e This sketch shows the problem 

 

   
 

  

(3 3 4 ) ( 2 ) 2 3

Therefore 2 3

And (3 3 4 ) (2 3 ) 5 4 7

PM

MQ

OQ OM MQ

= + + − + + = + +

= + +

= + = + + + + + +

i j k i j k i j k

i j k

i j k + i j k = i j k

�����

�����

���� ����� �����

 

  So Q has coordinates (5, 4, 7) 
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16 a (2 3 3 ) ( 2 3 )BC = + + − + + = +i j k i j k i j
����

 

  

(3 2 4 ) ( 2 3 ) 2

So 1 1 0 2     which is normal to the plane 

2 0 1

BD

BC BD BCD

= + + − + + = +

× = = − −

i j k i j k i k

i j k

i j k

����

���� ����  

  Using , with 2 3 ,r.n a.n a i j k= = + + this gives a vector equation of the plane BCD as 

  
  r.(i − j− 2k) = (i+ 2j+ 3k).(i − j− 2k) = 1− 2− 6= −7  

  This may be written in Cartesian form as 2 7 0x y z− − + =  

 

 b Let α  be the angle between BC and the plane   x + 2y + 3z = 4  and θ  be the acute angle  

between BC and the normal to this plane, which is 
  i + 2j+ 3k. 

  Then  α = 90−θ⇒ sinα = cosθ   

  
2 2 2 2 2

| ( ) ( 2 3 ) | 3
So sin cos 0.567 (3 s.f.)

2 141 1 1 2 3

i j . i j k
α θ

+ + +
= = = =

+ + +
 

 

 c Let A have coordinates (x, y, z) 

  Then (2 ) (3 ) (3 )   and  (3 ) (2 ) (4 )AC x y z AD x y z= − + − + − = − + − + −i j k i j k
���� ����

 

  As AC is perpendicular to , 0BD AC BD =.
���� ����

 

  
So 2(2 ) (3 ) 0

2 7                                  

x z

x z

− + − =

⇒ + = (1)
 

  As AD is perpendicular to , 0BC AD BC =.
���� ����

 

  
So (3 ) (2 ) 0

5                                     

x y

x y

− + − =

⇒ + = (2)
 

  As   AB = 26  

  
2 2 2( 1) ( 2) ( 3) 26   x y z− + − + − = (3)  

  Substituting   z = 7 − 2x  and   y = 5− x  from equation (1) and (2) into equation (3) gives 

  

  

(x −1)
2 + (3− x)

2 + (4− 2x)
2 = 26

x2 − 2x +1+ 9− 6x + x2 +16−16x + 4x2 = 26

6x2 − 24x = 0

x(x − 4) = 0

⇒ x = 0 or 4

 

  When   x = 0, y = 5 and   z = 7 

  When   x = 4, y = 1 and   z = −1 

  The two possible positions are (0, 5, 7) and (4, 1, –1) 
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17 a ( ) ( )4 2 3 2 5 6 8AB = + − − − + + = + −i j k i j k i j k
����

 

  Hence the direction ratios are 6 :1: 8−  

 

 b The direction cosines are given by 

  

  

l =
6

36 +1+ 64
=

6

101

m =
1

101

n = −
8

101

 

 

 c As the point A lies on the line, the Cartesian equation of the line is 

   
2 1 5x y z

l m n

+ − −
= = , i.e. 

  

x + 2

6

101( )
=

y −1

1

101( )
=

z − 5

− 8

101( )  

 

18 The direction cosines for the line are 
  

  l = cosα , m = cosβ , n = cosγ  

 Using the identity 2 2 2 1l m n+ + =  gives 

  2 2 2cos cos cos 1α β γ+ + =  

 Using the trigonometric identity 2 2cos 1 sinθ θ= −  gives 

  2 2 23 sin sin sin 1α β γ− − − =  

 Hence 2 2 2sin sin sin 2α β γ+ + =  

 

19 
1L  has direction vector 

1

1

1

l

m

n

λ
 
 =  
 
 

1
r  

 Similarly 
2L has direction vector 

2

2 2

2

l

m

n

µ
 
 =  
 
 

r  

 For some real numbers λ  and µ  

 

 Since the lines are parallel, 
1 2t=r r for some real number t  hence  

 

  

λl
1
= tµl

2
⇒

l
1

l
2

=
tµ
λ

λm
1
= tµm

2
⇒

m
1

m
2

=
tµ
λ

λn
1
= tµn

2
⇒

n
1

n
2

=
tµ
λ

So 
l
1

l
2

=
m

1

m
2

=
n

1

n
2

 

  



 

© Pearson Education Ltd 2018. Copying permitted for purchasing institution only. This material is not copyright free. 
13 

20 a The direction cosines for 
1W  are 

  
1 1 1

cos 45 , cos 60 , cos 60
2 22

l m n= = = = = =� � �  

  Hence an equation for 
1W
 
is 

2

1

1

µ

 
 

=  
 
 

r  

  The lines intersect if  

    

8 3 2

2 34

1 0 4

1 15 2

4

µ λ

 +
        = = + −        

     
 

r  

  This gives 

  

8 3 2
2 3                

4

4                                   

5 2
                           

4

+
= +

= −

= +

(1)

(2)

(3)

µ λ

µ λ

µ λ

  

 

  Substituting equation (2) in equation (3) gives  

  

5 2 2
4

4 4

Substituting for  in equation  gives  2

8 3 2 3 2
Equation  holds for these values of  and  as 2 2 2

4 4

− = + ⇒ = −

=

+
× = = −

(2)

(1)

λ λ λ

λ µ

λ µ

 

 

  Hence there is a solution, so the lines intersect at point A and substituting for  µ = 2 in the equation 

for 
1W  gives the coordinates of A as  (2, 2, 2)  

 

 b As the pylon lies in the xy-plane and is perpendicular to that plane 2AB = − k
����

 and 

2 2 2 2 2 2OB OA AB= + = − + − = −i j k k i j
���� ���� ����

  

  Distance from origin to point B ( )2
22 2 6OB= = + =

����

  

  Converting model units to metres, the distance 10 6 24.5 m (3 s.f.)= =  

 

 c In reality the wires won’t be perfectly straight, as there will be some sag. 
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21 Find the direction vectors of the new plane by transforming the direction vectors for the original 

plane giving 

 

1 0 3 0 6 1 0 3 4 2

1 2 1 3 8 and 1 2 1 1 8

1 0 2 2 4 1 0 2 2 8

−         
         − − = − − − = −         
         − −         

 

 Hence the normal to the transformed plane is given by 

 

  

i j k

6 −8 4

2 −8 8

= −32i − 40j− 32k  

 Simplify by dividing by –8, so 
  4i + 5j+ 4k  is a normal to 

 
∏

2
  

 Find a point on 
 
∏

2
 by transforming a point on 

 
∏

1
 

 

1 0 3 1 2

1 2 1 1 0

1 0 2 1 3

−    
    − − =    
    − − −    

 

 So   −2i − 3k  is a point on 
 
∏

2
 

 Using , with 4 5 4  and 2 3 ,r.n a.n n i j k a i k= = + + = − − this gives a vector equation of the plane as: 

  
  r.(4i+5j+ 4k) = (−2i − 3k).(4i +5j+ 4k) = −8−12 = −20  

 This can be written 

  

r.

4

5

4
















= −20   
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Challenge 

 Two direction vectors in the plane given by 
   
r

1
= pi− rk   and  r

2
= qj− rk  

 Hence a normal to the plane is given by 

  

   

i j k

p 0 −r

0 q −r

= qri + prj+ pqk  

Using , with  and ,  a point on the plane,r.n a.n n i j k a iqr pr pq p= = + + =  this gives a vector 

equation of the plane as: 

  
   r.qri + prj+ pqk = pi.(qri + prj+ pqk) = pqr  

 If d is the length of the perpendicular from the origin to the plane then 
1

| |
d=r. n

n
  

 

2 2 2 2 2 2

2 2 2
2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2 2

So 

1 1 1 1

pqr
d

q r p r p q

p q r
d

q r p r p q

q r p r p q

d p q r p q r

=
+ +

⇒ =
+ +

+ +
⇒ = = + +

  

 

 


