Conic Sections 1 2C

- v = 2x 31 Line: (1) Parabola: $v^2 = 3x$ (2) Substituting (1) into (2) gives $(2x-3)^2 = 3x$ (2x-3)(2x-3) = 3x $4x^2 - 12x + 9 = 3x$ $4x^2 - 15x + 9 = 0$ (x-3)(4x-3) = 0 $x = 3 \text{ or } \frac{3}{4}$ When x = 3, y = 2(3) - 3 = 3When $x = \frac{3}{4}$, $y = 2\left(\frac{3}{4}\right) - 3 = -\frac{3}{2}$ Hence the coordinates of P and Q are (3, 3) and $\left(\frac{3}{4}, -\frac{3}{2}\right)$ respectively.
- 2 Line: y = x+6 (1) Parabola: $y^2 = 32x$ (2) Substituting (1) into (2) gives

$$(x+6)^{2} = 32x$$

(x+6)(x+6) = 32x
x²+12x+36 = 32x
x²-20x+36 = 0
(x-2)(x-18) = 0
x = 2 or 18

When
$$x = 2$$
, $y = 2 + 6 = 8$

When x = 18, y = 18 + 6 = 24

Hence the coordinates of A and B are (2, 8) and (18, 24) respectively.

$$|AB| = \sqrt{(18-2)^2 + (24-8)^2}$$

= $\sqrt{16^2 + 16^2}$
= $16\sqrt{2}$

Hence the exact length *AB* is $16\sqrt{2}$

3 Line: y = x - 20 (1) Parabola: $y^2 = 10x$ (2) Substituting (1) into (2) gives

 $(x-20)^{2} = 10x$ (x-20)(x-20) = 10x $x^{2} - 40x + 400 = 10x$ $x^{2} - 50x + 400 = 0$ (x-10)(x-40) = 0x = 10 or 40

When x = 10, y = 10 - 20 = -10

When x = 40, y = 40 - 20 = 20

Hence the coordinates of A and B are (10, -10) and (40, 20) respectively.

The midpoint of *A* and *B* is $\left(\frac{10+40}{2}, \frac{-10+20}{2}\right) = (25, 5)$

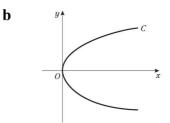
Hence the coordinates of M are (25, 5)

4 a $y = 12t \Rightarrow t = \frac{y}{12}$ Substituting $t = \frac{y}{12}$ into $x = 6t^2$ gives $x = 6\left(\frac{y}{12}\right)^2$ $y^2 = 24x$

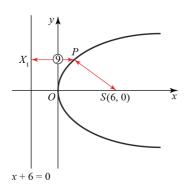
Since a general parabola has equation

$$y^2 = 4ax$$
, here $4a = 24$ so $a = \frac{24}{4} = 6$

So the focus *S*, has coordinates (6, 0) and the directrix has equation x + 6 = 0



4 c The distance *PS* is the same as the distance from *P* to the directrix, by the focus-directrix property.



Hence the distance PS = 9

d Using diagram in **c**, the *x*-coordinate of P and Q is x = 9 - 6 = 3

When
$$x = 3$$
, $y^2 = 24(3) = 72$

Hence
$$y = \pm \sqrt{72}$$

 $= \pm \sqrt{36}\sqrt{2}$
 $= \pm 6\sqrt{2}$

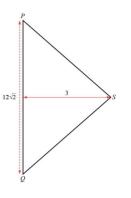
So the coordinates are of *P* and *Q* are $(3, 6\sqrt{2})$ and $(3, -6\sqrt{2})$

As *P* and *Q* are vertically above each other then

$$PQ = 6\sqrt{2} - -6\sqrt{2}$$
$$= 12\sqrt{2}$$

Hence, the distance PQ is $12\sqrt{2}$

4 e Drawing a diagram of the triangle *PQS* gives:



The *x*-coordinate of *P* and *Q* is 3 and the *x*-coordinate of *S* is 6

Hence the height of the triangle is height = 6 - 3 = 3

The length of the base is $12\sqrt{2}$

Area =
$$\frac{1}{2}(12\sqrt{2})(3)$$

= $\frac{1}{2}(36\sqrt{2})$
= $18\sqrt{2}$

Therefore the area of the triangle is $18\sqrt{2}$, where k = 18

5 a $P\left(\frac{5}{4}t^2, \frac{5}{2}t\right)$ Substituting $x = \frac{5}{4}t^2$ and $y = \frac{5}{2}t$ into $y^2 = 4ax$ gives: $\left(\frac{5}{2}t\right)^2 = 4a\left(\frac{5}{4}t^2\right)$ $\frac{25t^2}{4} = 5at^2$ $\frac{25}{4} = 5a \Rightarrow \frac{5}{4} = a$ When $a = \frac{5}{4}, y^2 = 4\left(\frac{5}{4}\right)x \Rightarrow y^2 = 5x$ The Cartesian equation of C is $y^2 = 5x$

SolutionBank

5 **b** When y = 5, $(5)^2 = 5x$ $\frac{25}{5} = x \Longrightarrow x = 5$

The *x*-coordinate of *P* is 5

c As
$$a = \frac{5}{4}$$
, the equation of the directrix of
C is $x + \frac{5}{4} = 0$ or $x = -\frac{5}{4}$

Therefore the coordinates of Q are $\left(-\frac{5}{4},3\right)$

d The coordinates of *P* and *Q* are (5, 5) and $\left(-\frac{5}{4}, 3\right)$ respectively. $m_{PQ} = \frac{3-5}{-\frac{5}{4}-5} = \frac{-2}{-\frac{25}{4}} = \frac{8}{25}$ $l: y-5 = \frac{8}{25}(x-5)$ l: 25y-125 = 8(x-5) l: 25y-125 = 8x-40 l: 0 = 8x-25y-40+125l: 0 = 8x-25y+85

An equation for *l* is 8x - 25y + 85 = 0

- 6 a A general parabola with equation $y^2 = 4ax$ has focus at (a, 0)Here $y^2 = 4x \implies 4a = 4$, giving $a = \frac{4}{4} = 1$ So the focus *S*, has coordinates (1, 0)
 - **b** Substituting y = 4 into $y^2 = 4x$ gives: $16 = 4x \Rightarrow x = \frac{16}{4} = 4$

The *x*-coordinate of P is 4

6 c The line *l* goes through S(1, 0) and P(4, 4)Hence gradient of *l*, $m_{SP} = \frac{4-0}{4-1} = \frac{4}{3}$ So *l* has equation: $y-0 = \frac{4}{3}(x-1)$ 3y = 4(x-1) 3y = 4x-40 = 4x-3y-4

The line *l* has equation 4x - 3y - 4 = 0

d Line *l*: 4x - 3y - 4 = 0 (1)

Parabola *C*: $y^2 = 4x$ (2)

Substituting (2) into (1) gives

$$y^2 - 3y - 4 = 0$$

 $(y-4)(y+1) = 0$
 $y = 4 \text{ or } -1$

You already know that y = 4 at *P*. So at *Q*, y = -1Substituting y = -1 into $y^2 = 4x$ gives $(-1)^2 = 4x \Rightarrow x = \frac{1}{4}$ Hence the coordinates of *Q* are $\left(\frac{1}{4}, -1\right)$

e The directrix of *C* has equation x+1=0 or x=-1

7 a A general parabola with equation $y^2 = 4ax$ has focus at (a, 0)

Here
$$y^2 = 12x$$
 so $4a = 12 \implies a = \frac{12}{4} = 3$

Hence the focus S has coordinates (3, 0)and an directrix of C has equation: x+3=0 or x=-3The coordinates of R are (-3, 0) as R lies on both the directrix and the x-axis.

b The directrix has equation x = -3

The (shortest) distance from P to the directrix is the distance PQ, since PQ is horizontal and hence meets the directrix at a right angle.

The distance SP = 12The focus-directrix property implies that SP = PQ = 12

Therefore the *x*-coordinate of *P* is $x_P = PQ - 3 = 12 - 3 = 9$

As P lies on C, when
$$x = 9$$

 $y^2 = 12(9) \Rightarrow y^2 = 108$

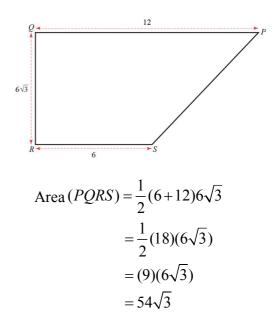
As
$$y > 0$$
 at P , so $y_P = \sqrt{108}$
= $\sqrt{36}\sqrt{3}$
= $6\sqrt{3} \Rightarrow P(9, 6\sqrt{3})$

Q lies on the directrix so its *x*-coordinate is $x_0 = -3$

Also, *QP* is horizontal so the *y*-coordinate of *Q* is $y_0 = y_p = 6\sqrt{3}$

Hence the exact coordinates of *P* are $(9, 6\sqrt{3})$ and the coordinates of *Q* are $(-3, 6\sqrt{3})$

8



The area of the quadrilateral *PQRS* is $54\sqrt{3}$ and k = 54

a
$$P(16, 8)$$

Substituting $x = 16$ and $y = 8$ into
 $y^2 = 4ax$ gives $(8)^2 = 4a(16)$
 $64 = 64a$
 $a = \frac{64}{64} = 1$

Q(4,b)Substituting x = 4, y = b and a = 1 into $y^2 = 4ax$ gives $b^2 = 4(1)(4)$ $b^2 = 16$ $b = \pm\sqrt{16}$ $b = \pm 4$ As b < 0, b = -4

Hence, a = 1, b = -4

SolutionBank

8 b The coordinates of P and Q are (16, 8) and (4, -4) respectively.

$$\therefore m_{PQ} = \frac{-4-8}{4-16} = \frac{-12}{-12} = 1$$

So *l* has equation: y-8 = l(x-16)v = x - 8

- **c** *R* has coordinates $\left(\frac{16+4}{2}, \frac{8+(-4)}{2}\right) = (10, 2)$
- **d** As l_2 is perpendicular to l, $m_{l_2} = -1$ Since l_2 passes through *R*, it has equation

$$y-2 = -1(x-10)$$
$$y-2 = -x+10$$
$$y = -x+12$$

- $\therefore l_2$ has equation y = -x + 12
- **e** Line l_2 : y = -x + 12(1)

Parabola *C*: $y^2 = 4x$ (2)

Substituting (1) into (2) gives

$$(-x+12)^{2} = 4x$$

$$x^{2}-12x-12x+144 = 4x$$

$$x^{2}-28x+144 = 0$$

$$(x-14)^{2}-196+144 = 0$$

$$(x-14)^{2}-52 = 0$$

$$(x-14)^{2} = 52$$

$$x-14 = \pm\sqrt{52}$$

$$x-14 = \pm\sqrt{4}\sqrt{13}$$

$$x-14 = \pm\sqrt{13}$$

$$x = 14 \pm 2\sqrt{13}$$

 l_2 meets C at the points with x coordinates $x = 14 \pm 2\sqrt{13}$

9 a The point P is $P(at^2, 2at)$ and the focus S is S(a, 0)The gradient of l is therefore 2at - 0

$$m_{PS} = \frac{2t}{at^2 - a}$$
$$= \frac{2t}{t^2 - 1}$$

b Suppose point *Q* has the coordinate $Q(at_{1}^{2}, 2at_{1})$

↑+

Since *l* passes through *P*, *Q* and *S*, the gradient of PS = the gradient of SQ.

2+

Therefore

So

$$\frac{2t}{t^2 - 1} = \frac{2t_1}{t_1^2 - 1}$$
$$2t(t_1^2 - 1) = 2t_1(t^2 - 1)$$
$$tt_1^2 - t = t_1t^2 - t_1$$
$$tt_1^2 - t - t_1t^2 + t_1 = 0$$
$$t_1^2 + \frac{t_1}{t} - t_1t - 1 = 0$$
$$(t_1 - t)(t_1 + \frac{1}{t}) = 0$$
So $t_1 = t$ (at P)
or $t_1 = -\frac{1}{t}$ (at Q)

The coordinates of Q are therefore $Q\left(at_{1}^{2}, 2at_{1}\right) = Q\left(\frac{a}{t^{2}}, -\frac{2a}{t}\right)$

10 The shaded area is given by 10

$$\int_{0}^{10} y \, dx = \int_{0}^{10} 6\sqrt{x} \, dx$$
$$= \int_{0}^{10} 6x^{\frac{1}{2}} \, dx$$
$$= \left[4x^{\frac{3}{2}} \right]_{0}^{10}$$
$$= 4 \times 10^{\frac{3}{2}}$$
$$= 4\sqrt{1000}$$
$$= 40\sqrt{10}$$

11 At point P,

$$\frac{1}{2}x = \left(\frac{1}{8}x\right)^2$$

$$\frac{1}{2}x = \frac{x^2}{64}$$

$$32x = x^2$$

$$x^2 - 32x = 0$$

$$x(x - 32) = 0$$

$$x \neq 0 \text{ since } x = 0 \text{ at } O, \text{ so } x = 32$$
and
$$y^2 = \frac{1}{2} \times 32 = 16, \text{ so } y = 4$$
Point P is therefore $P(32, 4)$

Now find the equation of *C* above the *x*-axis between x = 0 and x = 32:

$$y^2 = \frac{1}{2}x$$
, so $y = \frac{\sqrt{x}}{\sqrt{2}}$

The shaded area is found by subtracting the area of the triangle [with vertices at O, P and (32, 0)] from the area under the curve (above the *x*-axis) between O and P.

Area
$$R = \frac{1}{\sqrt{2}} \int_{0}^{32} x^{\frac{1}{2}} dx - \frac{1}{2} (32)(4)$$

 $= \frac{1}{\sqrt{2}} \left[\frac{2}{3} x^{\frac{3}{2}} \right]_{0}^{32} - 64$
 $= \frac{\sqrt{2}}{3} (32^{\frac{3}{2}}) - 64$
 $= \frac{\sqrt{2}}{3} (2^{\frac{3}{2}}) (16^{\frac{3}{2}}) - 64$
 $= \frac{4}{3} (64) - 64$
 $= \frac{64}{3}$

12 a At *P* and *Q*, $y^2 = 8 \times 2 = 16 \Rightarrow y = \pm 4$ Now by the diagram, a > 0 and b < 0Therefore a = 4 and b = -4 **12 b** A general parabola with equation $y^2 = 4\alpha x$ has focus at $(\alpha, 0)$ Here, $y^2 = 8x \Longrightarrow \alpha = 2$

> The parabola has directrix $x = -\alpha \Rightarrow x = -2$ So the coordinates of *T* and *P* are T(-2, 0) and P(2, 4)

- The gradient of *l* is $m_l = \frac{4-0}{2-(-2)} = 1$ \therefore The equation of *l* is y-4 = x-2 $\Rightarrow y = x+2$
- **c** The area of triangle PQT is $\frac{1}{2} \times 8 \times 4 = 16$

The area bounded by the parabola, the line x = 0 and the line x = 2 is

$$2\int_{2}^{2}\sqrt{8}\sqrt{x} \, \mathrm{d}x = 4\sqrt{2}\left[\frac{2}{3}x^{\frac{3}{2}}\right]_{0}^{2}$$
$$= 4\sqrt{2}\left(\frac{4\sqrt{2}}{3}\right)$$
$$= \frac{32}{3}$$

The required area *R* is therefore $16 - \frac{32}{3} = \frac{16}{3}$

- **13 a** A general parabola with equation $y^2 = 4ax$ has focus at (a, 0)Here, $y^2 = 16x \Rightarrow a = 4$ The focus is at the point S(4, 0)
 - **b** At *P*, y = 4 so $4^2 = 16x$ and x = 1Therefore *x*-coordinate of *P* is x = 1
 - c *l* passes through S(4, 0) and P(1, 4)The gradient of *l* is $m_l = \frac{4-0}{1-4} = -\frac{4}{3}$ \therefore The equation of *l* is $y = -\frac{4}{3}(x-4)$ or $y = -\frac{4x}{3} + \frac{16}{3}$

13 d Q lies on both l and C, so satisfies both

$$y^2 = 16x$$
 (1)
 $y = -\frac{4x}{3} + \frac{16}{3}$ (2)

Hence, at Q

$$\left(-\frac{4x}{3} + \frac{16}{3}\right)^2 = 16x$$

$$\frac{16x^2}{9} + \frac{256}{9} - \frac{128x}{9} = 16x$$

$$16x^2 + 256 - 128x = 144x$$

$$16x^2 - 272x + 256 = 0$$

$$x^2 - 17x + 16 = 0$$

$$(x - 1)(x - 16) = 0$$

 $x \neq 1$ (since x = 1 at *P*), so x = 16So *Q* has *x*-coordinate x = 16

The branch of C which lies under the x-axis has equation $y = -4\sqrt{x}$

Hence, at Q, $y = -4\sqrt{16} = -16$

Defining T to be the point (16, 0), the shaded area R is therefore given by

Area
$$R = \left| \int_{0}^{16} y \, dx \right| - [$$
area triangle STQ]
 $= \left| \int_{0}^{16} -4\sqrt{x} \, dx \right| - \frac{1}{2} \times 12 \times 16$
 $= \int_{0}^{16} 4x^{\frac{1}{2}} \, dx - 96$
 $= 4\left[\frac{2}{3}x^{\frac{3}{2}} \right]_{0}^{16} - 96$
 $= 4 \times \left(\frac{128}{3} \right) - 96$
 $= \frac{224}{3}$